Rev. 05 - 11 June 2008
Product data sheet

1. General description

The 74LVC1G53 is a low-power, low-voltage, high-speed, Si-gate CMOS device.
The 74LVC1G53 provides one analog multiplexer/demultiplexer with a digital select input (S), two independent inputs/outputs (Y0 and Y1), a common input/output (Z) and an active LOW enable input $(\overline{\mathrm{E}})$. When pin $\overline{\mathrm{E}}$ is HIGH, the switch is turned off.

Schmitt-trigger action at the select and enable inputs makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V .

2. Features

- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
-7.5 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
-6.5 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Switch current capability of 32 mA
- High noise immunity
- CMOS low-power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD 78 Class I
- ESD protection:
- HBM JESD22-A114E exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- CDM JESD22-C101C exceeds 1000 V
- Control inputs accepts voltages up to 5 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G53DP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm ; lead length 0.5 mm	SOT505-2
74LVC1G53DC	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74LVC1G53GT	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $1 \times 1.95 \times 0.5 \mathrm{~mm}$	SOT833-1
74LVC1G53GD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON8U	plastic extremely thin small outline package; no leads; 8 terminals; UTLP based; body $3 \times 2 \times 0.5 \mathrm{~mm}$	SOT996-2
74LVC1G53GM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XQFN8U	plastic extremely thin quad flat package; no leads; 8 terminals; UTLP based; body $1.6 \times 1.6 \times 0.5 \mathrm{~mm}$	SOT902-1

4. Marking

Table 2. Marking codes

Type number	Marking code
74LVC1G53DC	V 53
74LVC1G53DP	V 53
74LVC1G53GT	V 53
74LVC1G53GD	V 53
74LVC1G53GM	V 53

5. Functional diagram

Fig 1. Logic symbol

Fig 2. Logic diagram

6. Pinning information

6.1 Pinning

Fig 3. Pin configuration SOT505-2 (TSSOP8) and SOT765-1 (VSSOP8)

Fig 4. Pin configuration SOT833-1 (XSON8)

Fig 5. Pin configuration SOT996-2 (XSON8U)

Fig 6. Pin configuration SOT902-1 (XQFN8U)

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description	
	SOT505-2, SOT765-1, SOT996-2 and SOT833-1	SOT902-1	
Z	1	7	common output or input
\bar{E}	2	6	enable input (active LOW)
GND	3	5	ground $(0 \mathrm{~V})$
GND	4	4	ground $(0 \mathrm{~V})$
S	5	3	select input
Y1	6	2	independent input or output
Y0	7	1	independent input or output
V_{CC}	8	8	supply voltage

7. Functional description

Table 4. Function table[1]

Input		Channel on
S	E	
L	L	Y0 to Z or Z to Y0
H	L	Y1 to Z or Z to Y1
X	H	Z (switch off)

[1] $H=$ HIGH voltage level; $L=$ LOW voltage level; $X=$ don't care; $Z=$ high-impedance OFF-state.

8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
V_{1}	input voltage		[1] -0.5	+6.5	V
I_{1}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$	-50	-	mA
ISK	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$	-	± 50	mA
$\mathrm{V}_{\text {Sw }}$	switch voltage	enable and disable mode	[2] -0.5	$\mathrm{V}_{C C}+0.5$	V
Isw	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
$l_{\text {cc }}$	supply current		-	100	mA
$\mathrm{I}_{\text {GND }}$	ground current		-100	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[3] -	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.
[3] For TSSOP8 packages: above $55^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.5 \mathrm{~mW} / \mathrm{K}$.
For VSSOP8 packages: above $110^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8.0 \mathrm{~mW} / \mathrm{K}$.
For XSON8, XSON8U and XQFN8U packages: above $45^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.4 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		1.65	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage	enable and disable mode	$\underline{[1]}$	0	$\mathrm{~V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	[2] -	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	[2] -	10	$\mathrm{~ns} / \mathrm{V}$

[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.
[2] Applies to control signal levels.

10. Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions		$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		1.7	-	-	1.7	-	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		2.0	-	-	2.0	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		$0.7 \times \mathrm{V}_{\text {cc }}$	-	-	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		-	-	$0.35 \times \mathrm{V}_{\text {cC }}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	-	0.7	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		-	-	0.8	-	0.8	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V		-	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V
1	input leakage current	pin S and pin \bar{E}; $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 5.5 V	[2]	-	± 0.1	± 2	-	± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \text { see Figure } 7 \end{aligned}$	[2]	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \text { see Figure } 8 \end{aligned}$	[2]	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	[2]	-	0.1	10	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	pin S and pin \bar{E}; $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{l}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	[2]	-	5	500	-	5000	$\mu \mathrm{A}$
C_{1}	input capacitance			-	2.5	-	-	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance			-	6.0	-	-	-	pF
$\mathrm{CS}_{\text {(ON })}$	ON-state capacitance			-	18	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

10.1 Test circuits

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or V_{CC}.
Fig 7. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 8. Test circuit for measuring ON -state leakage current

10.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15.

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON resistance (peak)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 9						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	34.0	130	-	195	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	12.0	30	-	45	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	10.4	25	-	38	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	7.8	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6.2	15	-	23	Ω

Table 8. ON resistance ...continued
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15.

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ [1]	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON}(\text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{1}=$ GND; see Figure 9						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	8.2	18	-	27	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.1	16	-	24	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	6.9	14	-	21	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	6.5	12	-	18	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5.8	10	-	15	Ω
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$; see Figure 9						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	10.4	30	-	45	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.6	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.0	18	-	27	Ω
		$\mathrm{I}_{\text {SW }}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	6.1	15	-	23	Ω
		$\mathrm{I}_{\text {SW }}=32 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	-	4.9	10	-	15	Ω
$\mathrm{R}_{\text {ON(flat) }}$	ON resistance (flatness)	$\mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	26.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	5.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	3.5	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	2.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.5	-	-	-	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] Flatness is defined as the difference between the maximum and minimum value of $O N$ resistance measured at identical V_{CC} and temperature.

10.3 ON resistance test circuit and graphs

$$
\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / I_{\mathrm{SW}} .
$$

Fig 9. Test circuit for measuring ON resistance

(1) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.
(4) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
(5) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Fig 10. Typical ON resistance as a function of input voltage; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 11. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 13. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 14. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 15. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

11. Dynamic characteristics

Table 9. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 18.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	Z to Yn or Yn to Z ; see Figure 16							
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		-	-	2	-	2.5	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		-	-	1.2	-	1.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-	-	1.0	-	1.25	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V		-	-	0.8	-	1.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	-	0.6	-	0.8	ns
$t_{\text {en }}$	enable time	S to Z or Yn ; see Figure 17	[4]						
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		2.6	6.7	10.3	2.6	12.9	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		1.9	4.1	6.4	1.9	8.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		1.9	4.0	5.5	1.8	7.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.8	3.4	5.0	1.8	6.3	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.3	2.6	3.8	1.3	4.8	ns
		$\overline{\mathrm{E}}$ to Z or Yn; see Figure 17	[4]						
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		1.9	4.0	7.3	1.9	9.2	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		1.4	2.5	4.4	1.4	5.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		1.1	2.6	3.9	1.1	4.9	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.2	2.2	3.8	1.2	4.8	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.0	1.7	2.6	1.0	3.3	ns
$\mathrm{t}_{\text {dis }}$	disable time	S to Z or Yn ; see Figure 17	[5]						
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		2.1	6.8	10.0	2.1	12.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		1.4	3.7	6.1	1.4	7.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		1.4	4.9	6.2	1.4	7.8	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.1	4.0	5.4	1.1	6.8	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.0	2.9	3.8	1.0	4.8	ns
		$\overline{\mathrm{E}}$ to Z or Yn ; see Figure 17	[5]						
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		2.3	5.6	8.6	2.3	11.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		1.2	3.2	4.8	1.2	6.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		1.4	4.0	5.2	1.4	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		2.0	3.7	5.0	2.0	6.3	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.3	2.9	3.8	1.3	4.8	ns

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).
[4] $t_{\text {en }}$ is the same as tpzh and tpzL.
[5] $t_{\text {dis }}$ is the same as $t_{\text {PLZ }}$ and $t_{\text {PHZ }}$.

11.1 Waveforms and test circuits

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 16. Input (Yn or Z) to output (Z or Yn) propagation delays

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 17. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.65 V to 2.7 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.7 V to 5.5 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 11.
Definitions test circuit:
$R_{T}=$ Termination resistance (should be equal to output impedance Z_{o} of the pulse generator).
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance (including jig and probe capacitance).
$R_{\mathrm{L}}=$ Load resistance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 18. Load circuit for switching times

Table 11. Test data

Supply voltage	Input		Load				
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{t}_{\mathbf{P L H}}, \mathbf{t}_{\mathbf{P H L}}$	$\mathbf{t}_{\text {PZH }}, \mathbf{t}_{\text {PHZ }}$	$\mathbf{t}_{\mathbf{P Z L}}, \mathbf{t}_{\text {PLZ }}$
1.65 V to 1.95 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.0 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \mathrm{~V}_{\mathrm{CC}}$
2.3 V to 2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.0 \mathrm{~ns}$	30 pF	500Ω	open	GND	$2 \mathrm{~V}_{\mathrm{CC}}$
2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \mathrm{~V}_{\mathrm{CC}}$
3 V to 3.6 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \mathrm{~V}_{\mathrm{CC}}$
4.5 V to 5.5 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \mathrm{~V}_{\mathrm{CC}}$

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=600 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=600 \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \text { see Figure } 19 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.260	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.078	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.078	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.078	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	300	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	300	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		300		MHz

Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \\ & \text { see Figure } 21 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-40	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-40	-	dB
$Q_{\text {inj }}$	charge injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \mathrm{R}_{\text {gen }}=0 \Omega ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 22 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	3.3	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	4.1	-	pC
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	-	5.0	-	pC
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.4	-	pC
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	7.5		pC

11.3 Test circuits

Fig 19. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
Fig 20. Test circuit for measuring the frequency response when switch is in ON-state

Adjust $\mathfrak{f}_{\mathrm{i}}$ voltage to obtain 0 dBm level at input.
Fig 21. Test circuit for measuring isolation (OFF-state)

a. Test circuit

vo

b. Input and output pulse definitions
$Q_{i n j}=\Delta V_{O} \times C_{L}$.
$\Delta V_{O}=$ output voltage variation.
$\mathrm{R}_{\text {gen }}=$ generator resistance .
$\mathrm{V}_{\text {gen }}=$ generator voltage.
Fig 22. Test circuit for measuring charge injection

12. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm ; lead length 0.5 mm SOT505-2
DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	$\mathbf{b}_{\mathbf{p}}$	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.75 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.08 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 2.9 \end{aligned}$	0.65	$\begin{aligned} & \hline 4.1 \\ & 3.9 \end{aligned}$	0.5	$\begin{aligned} & 0.47 \\ & 0.33 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.70 \\ & 0.35 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT505-2		---		$\square \bigcirc$	02-01-16

Fig 23. Package outline SOT505-2 (TSSOP8)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1	0.15	0.85	0.12	0.27	0.23	2.1	2.4	0.5	3.2	0.4	0.40	0.21					
	0.00	0.60		0.17	0.08	1.9	2.2	0.2	0.13	0.1	0.4	8°						
0.0	0.4	0.15	0.19		0.1	0°												

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	
	IEC	JEDEC	JEITA		PROJECTION
SOT765-1		MO-187			

Fig 24. Package outline SOT765-1 (VSSOP8)

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$ \max	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25	2.0	1.05		0.6	0.5	0.35
			0.17	1.9	0.95	0.40			
					0.27	0.32			

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT833-1	--	MO-252	---	\square ¢	$\begin{aligned} & 07-11-14 \\ & 07-12-07 \end{aligned}$

Fig 25. Package outline SOT833-1 (XSON8)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	0.5	0.05	0.35	2.1	3.1	0.5	1.5	0.5 0.3	0.15 0.05	0.6 0.4	0.1	0.05	0.05	0.1

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT996-2	--		-		$07-12-21$	

Fig 26. Package outline SOT996-2 (XSON8U)

XQFN8U: plastic extremely thin quad flat package; no leads;
8 terminals; UTLP based; body $1.6 \times 1.6 \times 0.5 \mathrm{~mm}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	0.5	0.05	0.25	1.65	1.65	0.55	0.5	0.35 0.25	0.15 0.05	0.1	0.05	0.05	0.05

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT902-1	---	MO-255	--	\square (®)	$\begin{aligned} & 05-11-25 \\ & 07-11-14 \end{aligned}$

Fig 27. Package outline SOT902-1 (XQFN8U)

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
CDM	Charged Device Model
DUT	Device Under Test

14. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G53_5	20080611	Product data sheet	-	74LVC1G53_4
Modifications:	\bullet	Added type number 74LVC1G53GD (XSON8U / SOT996-2 package)		
74LVC1G53_4	20080303	Product data sheet	-	74LVC1G53_3
74LVC1G53_3	20070829	Product data sheet	-	74LVC1G53_2
74LVC1G53_2	20060410	Product data sheet	-	74LVC1G53_1
74LVC1G53_1	20060110	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status ${ }^{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1 General description 1
2 Features 1
3 Ordering information 2
4 Marking 2
5 Functional diagram 2
6 Pinning information 3
6.1 Pinning 3
6.2 Pin description 4
7 Functional description 4
8 Limiting values 5
9 Recommended operating conditions. 5
10 Static characteristics. 6
10.1 Test circuits 7
10.2 ON resistance 7
10.3 ON resistance test circuit and graphs 8
11 Dynamic characteristics 11
11.1 Waveforms and test circuits 12
11.2 Additional dynamic characteristics 13
11.3 Test circuits 14
12 Package outline 16
13 Abbreviations 21
14 Revision history 21
15 Legal information 22
15.1 Data sheet status 22
15.2 Definitions 22
15.3 Disclaimers 22
15.4 Trademarks 22
16 Contact information 22
17 Contents 23
founded by

