INTEGRATED CIRCUITS

DATA SHEET

74LVT2952

3.3 V LVT octal registered transceiver (3-State)

Product data sheet Supersedes data of 1998 Feb 19 IC23 Data Handbook

3.3 V Octal registered transceiver (3-State)

74LVT2952

FEATURES

- 8-bit registered transceiver
- Independent registers for A and B buses
- Output capability: +64 mA/-32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- No bus current loading when output is tied to 5 V bus
- Power-up reset
- Power-up 3-State
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

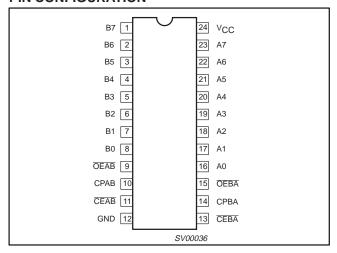
DESCRIPTION

The LVT2952 is a high-performance BiCMOS product designed for $V_{\rm CC}$ operation at 3.3 V.

This device combines low static and dynamic power dissipation with high speed and high output drive.

The 74LVT2952 device is an 8-bit registered transceiver. Two 8-bit back-to-back registers store data flowing in both directions between two bidirectional buses.

Data applied to the inputs is entered and stored on the rising edge of the Clock (CPXX) provided that the Clock Enable (CEXX) is LOW. The data is then present at the 3-State output buffers, but is only accessible when the Output Enable (OEXX) is LOW. Data flow from A inputs to B outputs is the same as for B inputs to A outputs.

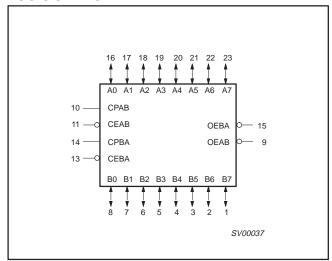

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $T_{amb} = 25 ^{\circ}\text{C; GND} = 0 \text{V}$	TYPICAL	UNIT
t _{PLH}	Propagation delay CPBA to An or CPAB to Bn	$C_L = 50 \text{ pF}; \ V_{CC} = 3.3 \text{ V}$	3.1 3.8	ns
C _{IN}	Input capacitance	V _I = 0 V or 3.0 V	4	pF
C _{I/O}	I/O pin capacitance	Outputs disabled; V _{I/O} = 0 V or 3.0 V	8	pF
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} = 3.6 V	0.13	mA

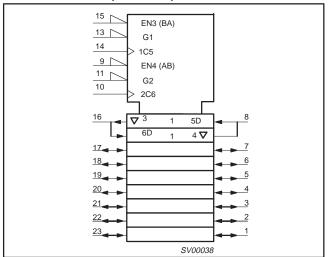
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	TYPE NUMBER	DWG NUMBER
24-Pin Plastic SOL	–40 °C to +85 °C	74LVT2952D	SOT137-1
24-Pin Plastic SSOP Type II	–40 °C to +85 °C	74LVT2952DB	SOT340-1
24-Pin Plastic TSSOP Type I	−40 °C to +85 °C	74LVT2952PW	SOT355-1

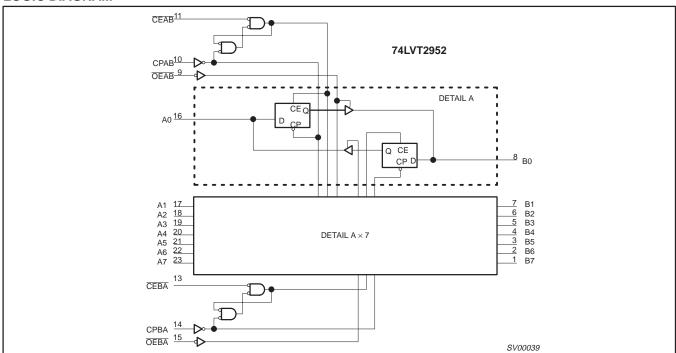
PIN CONFIGURATION


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
10, 14	CPAB / CPBA	Clock input A to B / Clock input B to A
11, 13	CEAB / CEBA	Clock enable input A to B / Clock enable input B to A
16, 17, 18, 19, 20, 21, 22, 23	A0 – A7	Data inputs/outputs (A side)
8, 7, 6, 5, 4, 3, 2, 1	B0 – B7	Data outputs/outputs (B side)
9, 15	OEAB / OEBA	Output enable inputs
12	GND	Ground (0 V)
24	V _{CC}	Positive supply voltage


3.3 V Octal registered transceiver (3-State)

74LVT2952


LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE for Register An or Bn

	INPUTS			OPERATING
An or Bn	CPXX	CEXX	Q	MODE
Х	Х	Н	NC	Hold data
L H	↑	L L	L H	Load data

H = HIGH voltage level

L = LOW voltage level

 \uparrow = LOW-to-HIGH transition

X = Don't care

XX = AB or BA

NC=No change

FUNCTION TABLE for Output Enable

INPUTS	INTERNAL	An or Bn	OPERATING
OEXX	Q	OUTPUTS	MODE
Н	Х	Z	Disable outputs
L L	L	L H	Enable outputs

H = HIGH voltage level

L = LOW voltage level

X = Don't care

XX = AB or BA

Z = High-impedance "off" state

3.3 V Octal registered transceiver (3-State)

74LVT2952

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V _I < 0 V	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0 V	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or HIGH state	-0.5 to +7.0	V
	DC output ourrent	Output in HIGH state	-64	A
lout	DC output current	Output in LOW state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

RECOMMENDED OPERATING CONDITIONS

SYMBOL	MBOL PARAMETER	LIMITS		UNIT
STWIBUL	PARAMETER	MIN	MAX	UNII
V _{CC}	DC supply voltage	2.7	3.6	V
V _I	Input voltage	0	5.5	V
V _{IH}	HIGH-level input voltage	2.0	-	V
V _{IL}	LOW-level Input voltage	-	0.8	V
I _{OH}	HIGH-level output current	-	-32	mA
	LOW-level output current	-	32	A
l _{OL}	LOW-level output current; current duty cycle ≤ 50 %, f ≥ 1 kHz	-	64	mA
Δt/Δν	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3.3 V Octal registered transceiver (3-State)

74LVT2952

DC ELECTRICAL CHARACTERISTICS

					LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		Temp =	Γemp = −40 °C to +85 °C		UNIT
				MIN	TYP ¹	MAX	1
V _{IK}	Input clamp voltage	$V_{CC} = 2.7 \text{ V; } I_{IK} = -18 \text{ mA}$	$V_{CC} = 2.7 \text{ V}; I_{IK} = -18 \text{ mA}$		-0.9	-1.2	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V; } I_{OH} = -100 \mu\text{A}$		V _{CC} – 0.2	V _{CC} - 0.1	-	
V_{OH}	HIGH-level output voltage	V _{CC} = 2.7 V; I _{OH} = -8 mA		2.4	2.5	-	V
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -32 \text{ mA}$		2.0	2.2	-	
		$V_{CC} = 2.7 \text{ V}; I_{OL} = 100 \mu\text{A}$		_	0.1	0.2	
		$V_{CC} = 2.7 \text{ V; } I_{OL} = 24 \text{ mA}$		_	0.3	0.5]
V_{OL}	LOW-level output voltage	$V_{CC} = 3.0 \text{ V}; I_{OL} = 16 \text{ mA}$		_	0.25	0.4	V
		$V_{CC} = 3.0 \text{ V}; I_{OL} = 32 \text{ mA}$		_	0.3	0.5	
		$V_{CC} = 3.0 \text{ V}; I_{OL} = 64 \text{ mA}$		_	0.4	0.55	
V _{RST}	Power-up output low voltage ⁵	$V_{CC} = 3.6 \text{ V}; I_{O} = 1 \text{ mA}; V_{I} = \text{GND or } V_{CC} = 0.00 \text{ mA}; V_{I} = 0.00$	V_{CC} = 3.6 V; I_O = 1 mA; V_I = GND or V_{CC}		0.13	0.55	V
		$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}$			± 0.1	± 1.0	
		V _{CC} = 0 V or 3.6 V; V _I = 5.5 V		-	1	10	
II	Input leakage current	V _{CC} = 3.6 V; V _I = 5.5 V		-	1	20	μΑ
		V _{CC} = 3.6 V; V _I = V _{CC}	I/O Data pins4	-	0.1	1.0	1
		V _{CC} = 3.6 V; V _I = 0 V		-	-1	-5.0	1
l _{OFF}	Output off current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} = 0 \text{ V to } 4.5 \text{ V}$		-	1	± 100	μΑ
		V _{CC} = 3 V; V _I = 0.8 V		75	150		
I_{HOLD}	Bus Hold current A inputs ⁶	V _{CC} = 3 V; V _I = 2.0 V		- 75	-150	-	μА
		$V_{CC} = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 3.6 \text{ V}$		± 500	-	_]
I _{EX}	Current into an output in the HIGH state when V _O > V _{CC}	V _O = 5.5 V; V _{CC} = 3.0 V		_	60	125	μА
I _{PU/PD}	Power-up/down 3-State output current ³	$V_{CC0} \le 1.2 \text{ V}; V_O = 0.5 \text{ V to } V_{CC}; V_I = OE/OE = Don't care$	$V_{CC0} \le 1.2 \text{ V}$; $V_O = 0.5 \text{ V}$ to V_{CC} ; $V_I = \text{GND or } V_{CC}$; $OE/OE = \text{Don't care}$		± 1	± 100	μА
I _{CCH}		V_{CC} = 3.6 V; Outputs HIGH, V_{I} = GND or V_{CC} ; I_{O} = 0 mA		-	0.13	0.19	
I _{CCL}	Quiescent supply current	V_{CC} = 3.6 V; Outputs LOW, V_I = GND or V_{CC} ; I_O = 0 mA		-	3	12	mA
I _{CCZ}		$V_{CC} = 3.6 \text{ V}$; Outputs Disabled; $V_I = GN$ $I_O = 0 \text{ mA}$	ID or V _{CC} ;	-	0.13	0.19	
Δl _{CC}	Additional supply current per input pin ²	V _{CC} = 3 V to 3.6 V; One input at V _{CC} - Other inputs at V _{CC} or GND	- 0.6 V;	-	0.1	0.2	mA

NOTES:

- All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.
 This is the increase in supply current for each input at V_{CC} = 0.6 V.
 This parameter is valid for any V_{CC} between 0 V and 1.3 V with a transition time of up to 10 msec. From V_{CC} = 1.3 V to V_{CC} = 3.3 V ± 0.3 V a transition time of 100 μsec is permitted. This parameter is valid for T_{amb} = 25 °C only.
 Unused pins at V_{CC} or GND.
 For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
 This is the bus hold overdrive current required to force the input to the opposite logic state.

3.3 V Octal registered transceiver (3-State)

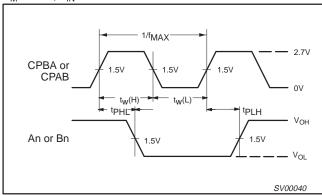
74LVT2952

AC CHARACTERISTICS

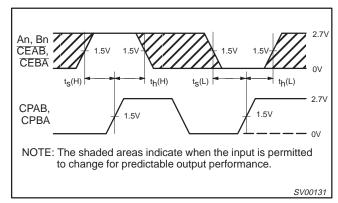
GND = 0 V; t_R = t_F = 2.5 ns; C_L = 50 pF, R_L = 500 Ω ; T_{amb} = -40 °C to +85 °C.

				LI	MITS		
SYMBOL	PARAMETER	WAVEFORM	Vcc	= 3.3 V ± 0	.3 V	V _{CC} = 2.7 V	UNIT
			MIN	TYP ¹	MAX	MAX	
f _{MAX}	Maximum clock frequency	1	150	200			MHz
t _{PLH} t _{PHL}	Propagation delay CPBA to An, CPAB to Bn	1	1.3 1.8	3.1 3.8	6.1 6.0	7.1 6.9	ns
t _{PZH}	Output enable time OEBA to An, OEAB to Bn	3 4	1.0 1.2	3.4 3.6	5.6 6.5	6.7 8.0	ns
t _{PHZ} t _{PLZ}	Output disable time OEBA to An, OEAB to Bn	3 4	1.0 1.6	3.7 3.4	6.3 5.1	6.9 5.3	ns

NOTE


AC SETUP REQUIREMENTS

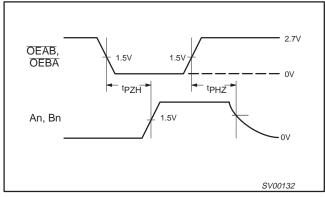
GND = 0 V; t_R = t_F = 2.5 ns; C_L = 50 pF, R_L = 500 Ω ; T_{amb} = -40 °C to +85 °C.


				LIMITS		
SYMBOL	PARAMETER	WAVEFORM	V _{CC} = 3.3	V ± 0.3 V	V _{CC} = 2.7 V	UNIT
			MIN	TYP ¹	MIN	
t _s (H) t _s (L)	Setup time An to CPAB or Bn to CPBA	2	2.5 2.5	1 1	2.8 3.0	ns
t _n (H) t _n (L)	Hold time An to CPAB ro Bn to CPBA	2	1.5 1.5	-0.5 -0.5	0.7 2.6	ns
t _s (H) t _s (L)	Setup time CEAB to CPAB or CEBA to CPBA	2	0.9 2.4	0.3 -0.3	0.8 2.7	ns
t _n (H) t _n (L)	Hold time CEAB to CPAB or CEBA to CPBA	2	2.5 2.5	0.3 0	0.7 2.6	ns
t _W (H) t _W (L)	CPAB or CPBA pulse width High or Low	1	3.3 3.3	1 1	3.3 3.3	ns

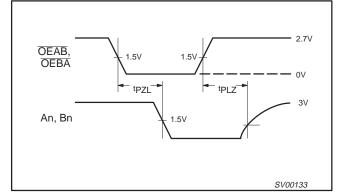
AC WAVEFORMS

 $V_M = 1.5 \text{ V}, V_{IN} = \text{GND to } 2.7 \text{ V}$

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

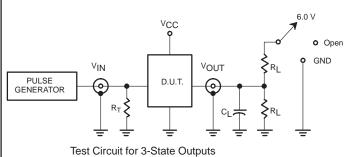


Waveform 2. Data Setup and Hold Times


^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

3.3 V Octal registered transceiver (3-State)

74LVT2952



Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

NEGATIVE PULSE VM 10%	90% AMP (V)
POSITIVE PULSE VM	90% THL (tF) AMP (V) 10% OV

 $V_M = 1.5 \text{ V}$ Input Pulse Definition

SWITCH POSITION

TEST	SWITCH
t _{PLH} /t _{PHL}	Open
t_{PLZ}/t_{PZL}	6V
t _{PHZ} /t _{PZH}	GND

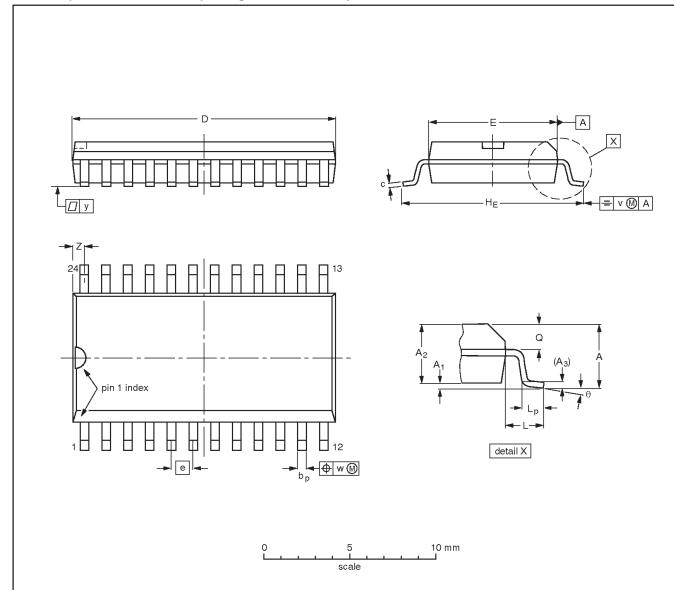
DEFINITIONS

 R_L = Load resistor; see AC CHARACTERISTICS for value.

C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

Termination resistance should be equal to Z_{OUT} of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS									
FAMILY	Amplitude	Rep. Rate	t _W	t _R	t _F					
74LVT	2.7 V	≤10 MHz	500 ns	≤2.5 ns	≤2.5 ns					


SV00092

3.3 V Octal registered transceiver (3-State)

74LVT2952

SO24: plastic small outline package; 24 leads; body width 7.5 mm

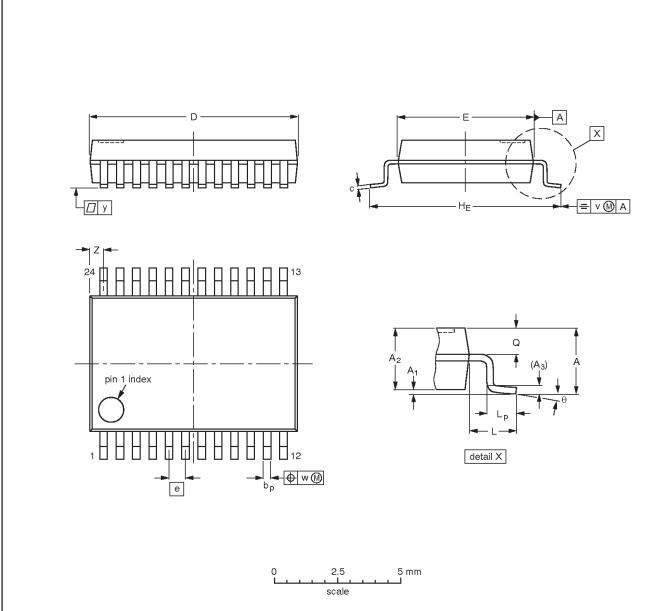
SOT137-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	ı	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	o°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.


OUTLINE		EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT137-1	075E05	MS-013				99-12-27 03-02-19	

3.3 V Octal registered transceiver (3-State)

74LVT2952

SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm

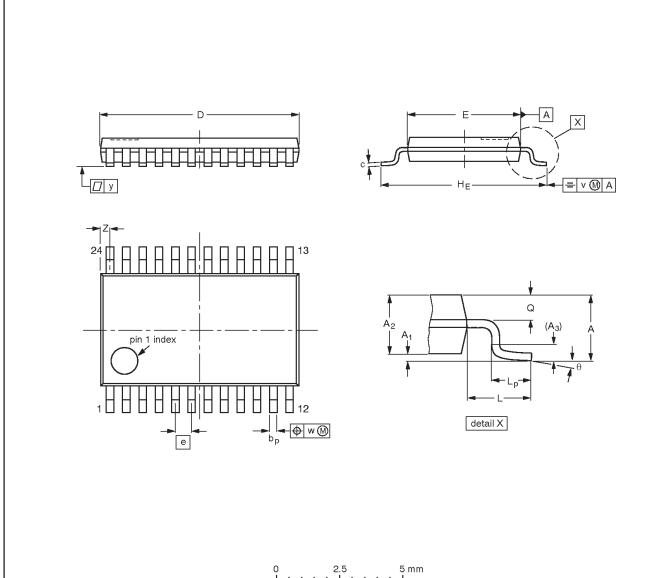
SOT340-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	8.4 8.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.8 0.4	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT340-1		MO-150				99-12-27 03-02-19	

3.3 V Octal registered transceiver (3-State)

74LVT2952

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	O	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	œ	٧	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	JEITA		PROJECTION	1990E DATE	
SOT355-1		MO-153				-99-12-27 03-02-19	

2004 Sep 07 10

3.3 V Octal registered transceiver (3-State)

74LVT2952

REVISION HISTORY

Rev	Date	Description
_3	20040907	Product data sheet (9397 750 04331). ECN 853-1765 18987 of 19 February 1998. Supersedes data of 1994 September 27.
		Modifications: ■ Ordering information table on page 2: remove 'North America' column; rename 'Outside North America' column to 'Type number'.
		● Logic diagram on page 3: add inversion symbols on clock signals before CP inputs.
_2	19980219	Product specification (9397 750 03546). ECN 853-1765 18987 of 19 February 1998. Supersedes data of 1994 September 27.
_1	19940927	

3.3 V Octal registered transceiver (3-State)

74LVT2952

Data sheet status

Level	Data sheet status [1]	Product status ^{[2] [3]}	Definitions
I	Objective data sheet	Development	This data sheet contains data from the objective specification for product development. Phillips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data sheet	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data sheet	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004 All rights reserved. Printed in U.S.A.

Date of release: 09-04

Document order number: 9397 750 04331

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

^[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.