74F269 # 8-bit bidirectional binary counter Rev. 03 — 26 January 2010 Product data sheet #### **General description** 1. The 74F269 is a fully synchronous 8-stage up/down counter featuring a preset capability for programmable operation, carry look-ahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock. #### 2. **Features** - Synchronous counting and loading - Built-in look-ahead carry capability - Count frequency 115 MHz (typical) - Supply current 95 mA (typical) #### **Ordering information** 3. Table 1. **Ordering information** | Type number | Package | | | | | | | | | |-------------|-------------------|--------|---|----------|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | N74F269D | 0 °C to 70 °C | SO24 | plastic small outline package; 24 leads;
body width 7.5 mm | SOT137-1 | | | | | | | N74F269DB | 0 °C to 70 °C | SSOP24 | plastic shrink small outline package; 24 leads; body width 5.3 mm | SOT340-1 | | | | | | #### 8-bit bidirectional binary counter # 4. Functional diagram ## 8-bit bidirectional binary counter 8-bit bidirectional binary counter 5 of 18 #### **Pinning information 5**. ## 5.1 Pinning ## 5.2 Pin description Table 2. Pin description **Product data sheet** | Symbol | Pin | Description | Unit load
HIGH/LOW | Load value ^[1]
HIGH/LOW | |------------------|--------------------------------|--|-----------------------|---------------------------------------| | U/\overline{D} | 1 | up or down count control input | 1.0/1.0 | 20 μA/0.6 mA | | Q0 to Q7 | 2, 3, 4, 5, 6, 8, 9, 10 | data output | 50/33 | 1.0 mA/20 mA | | GND | 7 | ground (0 V) | - | - | | CP | 11 | clock input | 1.0/1.0 | 20 μA/0.6 mA | | CEP | 12 | count enable parallel input (active LOW) | 1.0/1.0 | 20 μA/0.6 mA | | CET | 13 | count enable trickle input (active LOW) | 1.0/1.0 | 20 μA/0.6 mA | | TC | 14 | terminal count output (active LOW) | 50/33 | 1.0 mA/20 mA | | D0 to D7 | 23, 22, 21, 20, 18, 17, 16, 15 | data input | 1.0/1.0 | 20 μA/0.6 mA | | V_{CC} | 19 | supply voltage | - | - | | PE | 24 | parallel enable input (active LOW) | 1.0/1.0 | 20 μA/0.6 mA | ^[1] One FAST Unit Load (UL) is defined as 20 μA in HIGH state, 0.6 μA in LOW state. 8-bit bidirectional binary counter # 6. Functional description #### 6.1 Function table Table 3. Function table[1] | Operating modes | Input | | Output | Output | | | | | |--------------------------|------------|-----|--------|--------|----|----|------------|----| | | СР | U/D | CEP | CET | PE | Dn | Qn | TC | | Parallel load (Dn to Qn) | \uparrow | Χ | Χ | Χ | I | I | L | * | | | \uparrow | Χ | Χ | Χ | I | h | Н | * | | Count up (increment) | ↑ | h | I | ı | h | Χ | count up | * | | Count down (decrement) | ↑ | I | I | ı | h | Χ | count down | * | | Hold (do nothing) | ↑ | Χ | h | ı | h | Χ | qn | * | | | \uparrow | Χ | Χ | h | h | Х | qn | Н | ^[1] H = HIGH voltage level steady state h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition Terminal count up is with all Qn outputs HIGH and terminal count down is with all Qn outputs LOW. L = LOW voltage level steady state I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition qn = Lower case letters indicate state of referenced output prior to the LOW-to-HIGH clock transition X = don't care ^{↑ =} LOW-to-HIGH clock transition ^{* =} The \overline{TC} is LOW when \overline{CET} is LOW and the counter is at terminal count ## 8-bit bidirectional binary counter #### 8-bit bidirectional binary counter # 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|------------------------|----------------------|-----------------|------|------| | V_{CC} | supply voltage | | -0.5 | +7.0 | V | | VI | input voltage | | <u>[1]</u> –0.5 | +7.0 | V | | Vo | output voltage | output in HIGH-state | <u>[1]</u> –0.5 | +5.5 | V | | I _{IK} | input clamping current | V _I < 0 V | -30 | +5 | mA | | Io | output current | output in LOW-state | - | 40 | mA | | T _{amb} | ambient temperature | in free air | <u>[2]</u> 0 | 70 | °C | | T _{stg} | storage temperature | | –65 | +150 | °C | ^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ## 8. Recommended operating conditions Table 5. Recommended operating conditions | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|---------------------------|------------|-----------|-----|-----|------| | V_{CC} | supply voltage | | 4.5 | 5.0 | 5.5 | V | | V_{IH} | HIGH-level input voltage | | 2.0 | - | - | V | | V_{IL} | LOW-level input voltage | | - | - | 8.0 | V | | I _{IK} | input clamping current | | - | - | -18 | mA | | I _{OH} | HIGH-level output current | | –1 | - | - | mA | | I _{OL} | LOW-level output current | | - | - | 20 | mA | ^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C. #### 8-bit bidirectional binary counter ## 9. Static characteristics Table 6. Static characteristics | Symbol | Parameter | Conditions | | 25 °C | ; V _{CC} = | 5.0 V | –40 °C t | o +85 °C | Unit | |-----------------|--------------------------|--|-----|-------|---------------------|-------|----------|----------|------| | | | | | Min | Typ[1] | Max | Min | Max | | | V_{IK} | input clamping voltage | $V_{CC} = 4.5 \text{ V}; I_{IK} = -18 \text{ mA}$ | | -1.2 | -0.73 | - | -1.2 | - | V | | V_{OH} | HIGH-level output | V_{CC} = 4.5 V; V_I = V_{IL} or V_{IH} | | | | | | | | | | voltage | $V_{CC} = \pm 10 \%; I_{OH} = -1 \text{ mA}$ | | - | - | - | 2.5 | - | V | | | | $V_{CC} = \pm 5$ %; $I_{OH} = -1$ mA | | - | 3.4 | - | 2.7 | - | V | | V_{OL} | LOW-level output voltage | V_{CC} = 4.5 V; I_{OL} = 20 mA;
V_{I} = V_{IL} or V_{IH} | | | | | | | | | | | V _{CC} = ±10 % | | - | 0.30 | - | - | 0.50 | V | | | | V _{CC} = ±5 % | | - | 0.30 | - | - | 0.50 | V | | I _I | input leakage current | $V_{CC} = 5.5 \text{ V}; V_I = 7.0 \text{ V}$ | | - | - | - | - | 100 | μΑ | | I _{IH} | HIGH-level input current | $V_{CC} = 5.5 \text{ V}; V_I = 2.7 \text{ V}$ | | - | - | - | - | 20 | μΑ | | I _{IL} | LOW-level input current | $V_{CC} = 5.5 \text{ V}; V_I = 0.5 \text{ V}$ | | - | - | - | - | -0.6 | mΑ | | Io | output current | V _{CC} = 5.5 V | [2] | - | - | - | -60 | -150 | mΑ | | I _{CC} | supply current | $\overline{PE} = \overline{CET} = \overline{CEP} = U/\overline{D} = GND;$
$V_{CC} = 5.5 \text{ V}; CP = \text{rising edge}$ | | | | | | | | | | | Dn: V _I = 4.5 V | | - | 93 | - | - | 120 | mΑ | | | | Dn: V _I = GND | | - | 98 | - | - | 125 | mΑ | ^[1] All typical values are measured at $V_{CC} = 5 \text{ V}$. # 10. Dynamic characteristics **Table 7. Dynamic characteristics** GND = 0 V; for test circuit, see <u>Figure 13</u>. | Symbol | Parameter | Conditions | 25 °C; | V _{CC} = | 5.0 V | 0 °C to
V _{CC} = 5.0 | | Unit | |------------------|-------------------------------|---|--------|-------------------|-------|----------------------------------|------|------| | | | | Min | Тур | Max | Min | Max | | | t_{PLH} | LOW to HIGH propagation delay | CP to Qn; load; $\overline{PE} = LOW$; see $\underline{Figure 7}$ | 3.0 | 6.0 | 8.5 | 3.0 | 9.0 | ns | | | | CP to Qn; count; \overline{PE} = HIGH; see $\underline{Figure 7}$ | 3.0 | 6.0 | 9.0 | 3.0 | 10.0 | ns | | | | CP to TC; see Figure 7 | 4.5 | 6.5 | 9.5 | 4.0 | 10.5 | ns | | | | CET to TC; see Figure 8 | 3.5 | 6.0 | 9.0 | 3.0 | 10.0 | ns | | | | U/D to TC; see Figure 9 | 4.5 | 7.0 | 9.0 | 4.0 | 10.0 | ns | | t _{PHL} | HIGH to LOW | CP to Qn; load; \overline{PE} = LOW; see $\underline{Figure 7}$ | 4.0 | 6.5 | 8.5 | 4.0 | 9.0 | ns | | | propagation delay | CP to Qn; count; \overline{PE} = HIGH; see $\underline{Figure 7}$ | 4.5 | 7.0 | 10.0 | 4.0 | 10.5 | ns | | | | CP to TC; see Figure 7 | 5.0 | 6.5 | 9.5 | 5.0 | 10.0 | ns | | | | CET to TC; see Figure 8 | 3.0 | 6.5 | 9.0 | 3.0 | 10.0 | ns | | | | U/D to TC; see Figure 9 | 4.5 | 7.0 | 9.5 | 4.0 | 10.0 | ns | ^[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second. #### 8-bit bidirectional binary counter **Table 7. Dynamic characteristics** ...continued GND = 0 V; for test circuit, see Figure 13. | Symbol | Parameter | Conditions | 25 °C; | V _{CC} = | 5.0 V | | 70 °C;
V ± 0.5 V | Unit | |--------------------|----------------------|---------------------------------|--------|-------------------|-------|-----|---------------------|------| | | | | Min | Тур | Max | Min | Max | | | $t_{\text{su}(H)}$ | set-up time HIGH | Dn to CP; see Figure 10 | 3.5 | - | - | 2.5 | - | ns | | | | PE to CP; see Figure 10 | 5.5 | - | - | 5.5 | - | ns | | | | CEP or CET to CP; see Figure 11 | 6.0 | - | - | 5.0 | - | ns | | | | U/D to CP; see Figure 12 | 8.0 | - | - | 6.5 | - | ns | | $t_{su(L)}$ | set-up time LOW | Dn to CP; see Figure 10 | 3.5 | - | - | 2.5 | - | ns | | | | PE to CP; see Figure 10 | 6.5 | - | - | 6.5 | - | ns | | | | CEP or CET to CP; see Figure 11 | 8.0 | - | - | 6.5 | - | ns | | | | U/D to CP; see Figure 12 | 6.5 | - | - | 6.5 | - | ns | | t _{h(H)} | hold time HIGH | Dn to CP; see Figure 10 | 1.0 | - | - | 0 | - | ns | | | | PE to CP; see Figure 10 | 0 | - | - | 0 | - | ns | | | | CEP or CET to CP; see Figure 11 | 0 | - | - | 0 | - | ns | | | | U/D to CP; see Figure 12 | 0 | - | - | 0 | - | ns | | t _{h(L)} | hold time LOW | Dn to CP; see Figure 10 | 1.0 | - | - | 1.0 | - | ns | | | | PE to CP; see Figure 10 | 0 | - | - | 0 | - | ns | | | | CEP or CET to CP; see Figure 11 | 0 | - | - | 0 | - | ns | | | | U/D to CP; see Figure 12 | 0 | - | - | 0 | - | ns | | t_{WH} | pulse width HIGH | CP; see Figure 7 | 4.0 | - | - | 4.0 | - | ns | | t_{WL} | pulse width LOW | CP; see Figure 7 | 4.5 | - | - | 5.0 | - | ns | | f _{max} | maximum
frequency | see Figure 7 | 100 | 115 | - | 85 | - | MHz | ## 11. Waveforms #### 8-bit bidirectional binary counter Measurement points are given in Table 8. $V_{M} = 1.5 V$ V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load. Input (CET) to output (TC) propagation delay Fig 8. Measurement points are given in Table 8. $V_{M} = 1.5 V$ V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load. The up/down control input (U/\overline{D}) to output (\overline{TC}) propagation delay Fig 9. The shaded areas indicate when the input is permitted to change for predictable output performance. Measurement points are given in Table 8. $V_{M} = 1.5 V$ Fig 10. Data input (Dn), parallel enable input (PE) and clock input (CP) set-up and hold times #### 8-bit bidirectional binary counter 12 of 18 The shaded areas indicate when the input is permitted to change for predictable output performance. Measurement points are given in Table 8. $V_{M} = 1.5 \text{ V}$ V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load. Fig 11. Count enable inputs (CEP and CET) and clock input (CP) set-up and hold times The shaded areas indicate when the input is permitted to change for predictable output performance. Measurement points are given in Table 8. $V_{M} = 1.5 \text{ V}$ V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load. Fig 12. Up/down count control input (U/\overline{D}) and clock input (CP) set-up and hold times #### 8-bit bidirectional binary counter a. Input pulse definition b. Test circuit Test data is given in Table 8. Definitions for test circuit: C_L = Load capacitance including jig and probe capacitance. R_L = Load resistance. R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator. V_{EXT} = External voltage for measuring switching times. Fig 13. Test circuit for measuring switching times Table 8. Test data | Input | Load | | V _{EXT} | | | | | | |---------------------------------|-------|--------|---------------------------------|-------|----------------|-------------------------------------|-------------------------------------|-------------------------------------| | V_{l} f_{l} t_{W} t_{r} | | | t _r , t _f | CL | R _L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | 3.0 V | 1 MHz | 500 ns | ≤ 2.5 ns | 50 pF | 500Ω | open | open | 7.0 V | # 12. Package outline #### SO24: plastic small outline package; 24 leads; body width 7.5 mm SOT137-1 #### Note ^{1.} Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|--------|--------|----------|------------|------------|----------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT137-1 | 075E05 | MS-013 | | | | -99-12-27
03-02-19 | Fig 14. Package outline SOT137-1 (SO24) © NXP B.V. 2010. All rights reserved. #### SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm SOT340-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | | |------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------|--| | mm | 2 | 0.21
0.05 | 1.80
1.65 | 0.25 | 0.38
0.25 | 0.20
0.09 | 8.4
8.0 | 5.4
5.2 | 0.65 | 7.9
7.6 | 1.25 | 1.03
0.63 | 0.9
0.7 | 0.2 | 0.13 | 0.1 | 0.8
0.4 | 8°
0° | | 1. Plastic or metal protrusions of 0.2 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|-----|--------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT340-1 | | MO-150 | | | | 99-12-27
03-02-19 | Fig 15. Package outline SOT340-1 (SSOP24) © NXP B.V. 2010. All rights reserved. ## 8-bit bidirectional binary counter ## 13. Abbreviations #### **Abbreviations** Table 9. | Acronym | Description | |---------|---| | BiCMOS | Bipolar Complementary Metal-Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | # 14. Revision history ## Table 10. Revision history | | • | | | | | | |----------------|---|-----------------------|---------------|------------|--|--| | Document ID | Release date | Data sheet status | Change notice | Supersedes | | | | 74F269_3 | 20100126 | Product data sheet | - | 74F269_2 | | | | Modifications: | The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors. | | | | | | | | Legal texts have been adapted to the new company name where appropriate. | | | | | | | | DIP 24 (SOT222-1) package removed from <u>Section 3 "Ordering information"</u> and. <u>Section 12 "Package outline"</u> | | | | | | | 74F269_2 | 19960105 | Product specification | - | 74F269_1 | | | | | | | | | | | #### 8-bit bidirectional binary counter ## 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. #### 15.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com 74F269 **NXP Semiconductors** ## 8-bit bidirectional binary counter ## 17. Contents | 1 | General description | |------|------------------------------------| | 2 | Features | | 3 | Ordering information | | 4 | Functional diagram 2 | | 5 | Pinning information 5 | | 5.1 | Pinning | | 5.2 | Pin description 5 | | 6 | Functional description 6 | | 6.1 | Function table 6 | | 7 | Limiting values 8 | | 8 | Recommended operating conditions 8 | | 9 | Static characteristics 9 | | 10 | Dynamic characteristics 9 | | 11 | Waveforms | | 12 | Package outline | | 13 | Abbreviations | | 14 | Revision history | | 15 | Legal information | | 15.1 | Data sheet status | | 15.2 | Definitions | | 15.3 | Disclaimers | | 15.4 | Trademarks17 | | 16 | Contact information 17 | | 17 | Contents 18 | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 26 January 2010 Document identifier: 74F269_3