

PMEG2010AEK

1 A very low V_F MEGA Schottky barrier rectifier Rev. 01 — 30 March 2007

Product data sheet

Product profile

1.1 General description

Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifier with an integrated guard ring for stress protection, encapsulated in a SOT346 (SC-59A/TO-236) small Surface-Mounted Device (SMD) plastic package.

1.2 Features

- Forward current: I_F ≤ 1 A
- Reverse voltage: V_R ≤ 20 V
- Very low forward voltage
- Small SMD plastic package

1.3 Applications

- Low voltage rectification
- High efficiency DC-to-DC conversion
- Switch mode power supply
- Reverse polarity protection
- Low power consumption applications

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _F	forward current	$T_{sp} \le 55 ^{\circ}C$	-	-	1	Α
V_R	reverse voltage		-	-	20	V
V _F	forward voltage	I _F = 1 A	<u>[1]</u> _	400	450	mV

[1] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

2. Pinning information

Table 2. Pinning

Pin	Description	Simplified outline	Symbol
1	anode		
2	not connected	3	3
3	cathode	1 2	1 2 n.c. 006aaa436

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PMEG2010AEK	SC-59A	plastic surface-mounted package; 3 leads	SOT346

4. Marking

Table 4. Marking codes

Type number	Marking code
PMEG2010AEK	H1

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_R	reverse voltage		-	20	V
I _F	forward current	$T_{sp} \le 55 ^{\circ}C$	-	1	Α
I _{FRM}	repetitive peak forward current	$\begin{array}{l} t_p \leq 1 \text{ ms;} \\ \delta \leq 0.25 \end{array}$	-	3	Α
I _{FSM}	non-repetitive peak forward current	square wave; t _p = 8 ms	-	4.5	Α
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	<u>[1]</u> _	250	mW
			[2] _	350	mW
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
T_{stg}	storage temperature		-65	+150	°C

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm².

6. Thermal characteristics

Table 6. Thermal characteristics

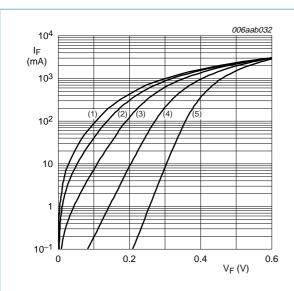
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	[1]				
			[2]	-	-	500	K/W
			[3]	-	-	360	K/W
$R_{th(j-sp)}$	thermal resistance from junction to solder point		[4]	-	-	150	K/W

^[1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses.

7. Characteristics

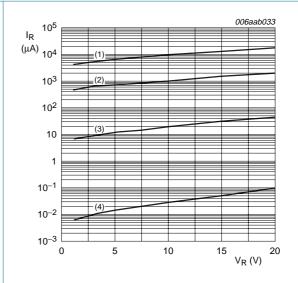
Table 7. Characteristics

 $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.


Parameter	Conditions	Min	Тур	Max	Unit
forward voltage		<u>[1]</u>			
	I _F = 10 mA	-	200	220	mV
	I _F = 100 mA	-	265	290	mV
	I _F = 1 A	-	400	450	mV
reverse current	V _R = 5 V	-	15	20	μΑ
	V _R = 10 V	-	20	80	μΑ
	V _R = 20 V	-	50	200	μΑ
diode capacitance	$V_R = 5 V; f = 1 MHz$	-	55	70	pF
	forward voltage	forward voltage $I_F = 10 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 1 \text{ A}$ reverse current $V_R = 5 \text{ V}$ $V_R = 10 \text{ V}$ $V_R = 20 \text{ V}$	forward voltage $\begin{array}{c cccc} I_F = 10 \text{ mA} & - & \\ I_F = 100 \text{ mA} & - & \\ I_F = 100 \text{ mA} & - & \\ I_F = 1 \text{ A} & - & \\ \hline \text{reverse current} & V_R = 5 \text{ V} & - & \\ \hline V_R = 10 \text{ V} & - & \\ \hline V_R = 20 \text{ V} & - & \\ \end{array}$		

^[1] Pulse test: $t_0 \le 300 \,\mu\text{s}$; $\delta \le 0.02$.

^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.


^[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm².

^[4] Soldering point of cathode tab.

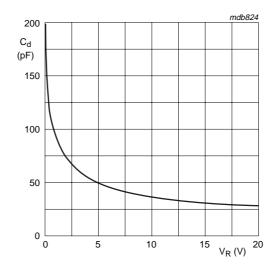
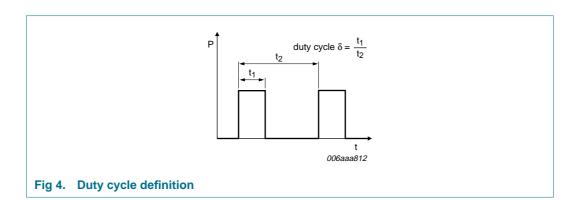

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) $T_{amb} = 125 \, ^{\circ}C$
- (3) $T_{amb} = 85 \,^{\circ}C$
- (4) $T_{amb} = 25 \, ^{\circ}C$
- (5) $T_{amb} = -40 \, ^{\circ}C$

Fig 1. Forward current as a function of forward voltage; typical values

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) $T_{amb} = 85 \, ^{\circ}C$
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) $T_{amb} = -40 \, ^{\circ}C$


Fig 2. Reverse current as a function of reverse voltage; typical values

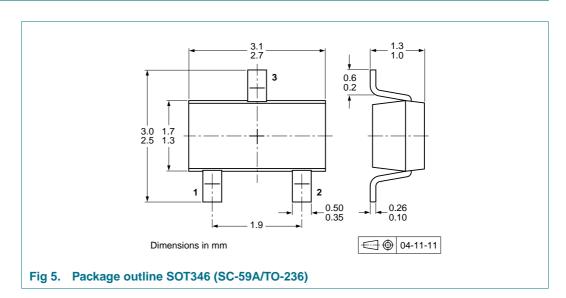
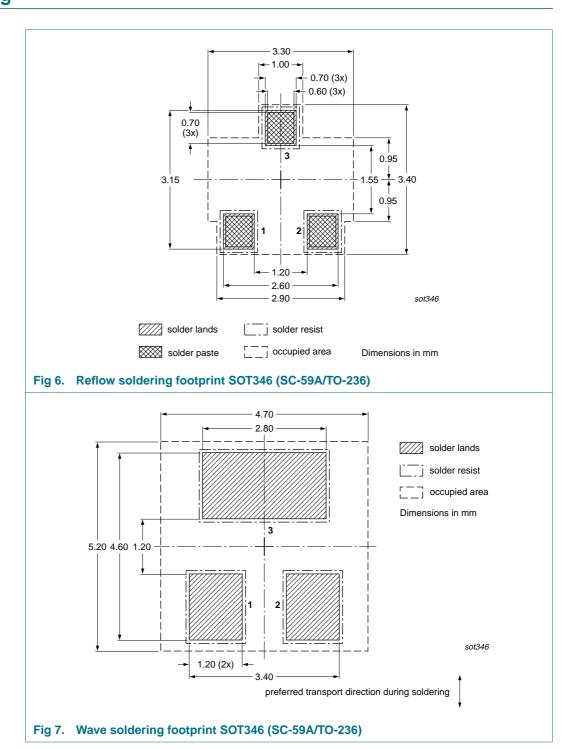

 $f = 1 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}$

Fig 3. Diode capacitance as a function of reverse voltage; typical values

8. Test information

9. Package outline

10. Packing information


Table 8. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number Package Description		Description	Packing qu	antity
			3000	10000
PMEG2010AEK	SOT346	4 mm pitch, 8 mm tape and reel	-115	-135

[1] For further information and the availability of packing methods, see $\underline{\text{Section 14}}$.

11. Soldering

12. Revision history

Table 9. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PMEG2010AEK_1	20070330	Product data sheet	-	-

PMEG2010AEK_1 © NXP B.V. 2007. All rights reserved.

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

PMEG2010AEK_1 © NXP B.V. 2007. All rights reserved.

PMEG2010AEK

1 A very low V_F MEGA Schottky barrier rectifier

15. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 2
6	Thermal characteristics 3
7	Characteristics 3
8	Test information 5
9	Package outline 5
10	Packing information 5
11	Soldering 6
12	Revision history 7
13	Legal information 8
13.1	Data sheet status 8
13.2	Definitions
13.3	Disclaimers
13.4	Trademarks 8
14	Contact information 8
15	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

