Integrated POTS interface for home access gateway and WLL

Features

- Monochip SLIC optimized for WLL \& VoIP applications
- Implement all key features of the borsht function
■ Single supply (4.5 V to 12 V)
- Built in DC/DC converter controller
- Soft battery reversal with programmable transition time
- On-hook transmission
- Programmable off-hook detector threshold
- Integrated ringing
- Integrated ring trip
- Parallel control interface (3.3V logic level)
- Programmable constant current feed
- Surface mount package
- Integrated thermal protection
- Dual gain value option
- Automatic recognition flyback and buckbc si configuration
- BCDIIIS 90 V technology
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating ranye

Description

The STLC3r,2t is a SLIC device specifically designea ir WLL (Wireless Local Loop), and ISDN! Terminal Adaptors and VoIP applications. min Cistinctive characteristic of this device is its awiity to operate with a single supply voltage (from +4.5 V to +12 V) and to self generate the negative battery by means of an on chip DC/DC converter controller that drives an external MOS switch.

The battery level is noter:, adjusted depending on the operating mo ie. A useful characteristic for these applicatic n 's is the integrated ringing generator.
The c.nt oi interface is parallel with open drain rutuat and 3.3 V logic levels. Constant current tecd can be set from 20 mA to 25 mA .
Off-hook detection threshold is programmable from 5 mA to 9 mA .
The device, developed in BCDIIIS technology (90 V process), operates in the extended temperature range and integrates a thermal protection that sets the device in power down when Tj exceeds $140^{\circ} \mathrm{C}$.

Contents

1 Block diagram and pin description 3
1.1 Block diagram 3
1.2 Pin connection 3
1.3 Pin description 4
1.4 Thermal data 5
2 Electrical specification 6
2.1 Absolute maximum ratings 6
2.2 Operating range 6
2.3 Electrical characteristics 7
3 Functional description 11
3.1 DC/DC converter 11
3.2 Operating modes 12
3.2.1 Power down 12
3.2.2 High impedance feeding (HI-Z) 12
3.2.3 Active 13
3.2.4 Ringing 14
3.2.5 Layout recommendation 16
3.2.6 External components list 16
4 Applications diagram 20
Appendix A STLC3095 test circuits 21
Appendix B STLC3095 over voltage protection 24
Appendix C Typical state diagram for STLC3095 operation 25
5 Package mechanical data 26
6 Ordering information 27
7 Revision history 27

1
 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 Pin connection

Figure 2. Pin connection

1.3 Pin description

Table 1. Pin description

${ }^{\circ}$	Pin	Function
1	D0	Control Interface: input bit 0 .
2	D1	Control Interface: input bit 1.
3	D2	Control interface: input bit 2.
4	PD	Power Down input. Normally connected to CVCC (or to logic level high).
5	Gain SET	Control gain interface 0 Level $R_{\text {xgain }}=0 d B \quad T_{x g a i n}=-6 d B$ 1 Level $R_{x g a i n}=+6 d B \quad T_{x g a i n}=-12 d B$
$\begin{gathered} 6,22,38, \\ 39,40,42 \end{gathered}$	NC	Not connected.
7	$\overline{\mathrm{DET}}$	Logic interface output of the supervision detector (active low).
8	RESERVED	Connected to GND
9	RESERVED	Connected to GND
10	RESERVED	Connected to GND
11	RESERVED	Left open.
12	RESERVED	Connected to GND
13	RX	4 wire input port (RX input); 300K input impedance. This signal is referred to AGND. If connected to single supply CODEC output it must be DC decoupled with proper capacitor.
14	ZAC1	RX buffer output (the AC impedance is connected from this node to ZAC).
15	ZAC	AC impedance synthesis.
16	RS	Protection resistors image (the image resistor is connected from this node to ZAC).
17	ZB	Balance Network for 2 to 4 wire conversion (the balance impedance ZB is connected from this node to AGND. ZA impedance is connected from this node to ZAC1).
18	CAC	AC feedback input, AC/DC split capacitor (CAC).
19	TX	4 wire output port (TX output). The signal is referred to AGND. If connected to single supply CODEC input it must be DC decoupled with proper capacitor.
20	CZ	Fly-Back compensation
21	VF	Feedback input for DC/DC converter controller.
23	CLK	Power Switch Controller Clock (typ. 125KHz). This pin can also be connected to CVCC or AGND. When the CLK pin is connected to CVCC an internal auto-oscillation is internally generated and it is used instead of the external clock. When the CLK pin is connected to AGND, the GATE output is disabled.
24	GATE	Driver for external Power MOS transistor (P-channel in Buck-boost configuration, Nchannel in Fly-back configuration).
25	RSENSE	Voltage input for current sensing. RSENSE resistor should be connected close to this pin and VPOS pin (Buck-boost) or GND (Fly-back). The PCB layout should minimize the extra resistance introduced by the copper tracks.

Table 1. Pin description (continued)

\mathbf{N}°	Pin	\quad Function
26	VPOS	Positive supply input.
27	CVCC	Internal positive voltage supply filter.
28	AGND	Analog Ground, must be shorted with BGND.
29	RLIM	Constant current feed programming pin (via RLIM). RLIM should be connected close to this pin and AGND pin to avoid noise injection.
30	IREF	Internal bias current setting pin. RREF should be connected close to this pin and AGND pin to avoid noise injection.
31	RTH	Off-hook threshold programming pin (via RTH). RTH should be connected close to this pin and AGND pin to avoid noise injection.
32	RD	DC feedback and ring trip input. RD should be connected close to this pin and AGND pin to avoid noise injection.
33	ILTF	Transversal line current image output.
34	CSVR	Battery supply filter capacitor.
35	BGND	Battery Ground, must be shorted with AGND.
36	VBAT	Regulated battery voltage self generated by the device via DC/DC converter. Must be shorted to VBAT1.
37	RING	2 wire port; RING wire (Ib is the current sunk into this pin).
41	TIP	2 wire port; TIP wire (la is the current sourced from this pin).
43	CREV	Reverse polarity transition time control. A proper capacitor connected between this pin and AGND is setting the reverse polarity transition time. This is the same transition time used to shape the "trapezoidal ringing" during ringing injection.
44	VBAT1	Frame connection. Must be shorted to VBAT.

1.4 Thermal data

Table 2. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal Resistance Junction to Ambient	Typ.	60
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

2 Electrical specification

2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit			
$\mathrm{V}_{\text {pos }}$	Positive supply voltage	-0.4 to +13	V			
A/BGND	AGND to BGND	-1 to +1	V			
$\mathrm{~V}_{\text {dig }}$	Pin D0, D1, D2, $\overline{\mathrm{DET}}$	-0.4 to 5.5	V			
$\mathrm{~T}_{\mathrm{j}}$	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {btot }}$	Vbtot=\|Vpos	+	Vbat	. (Total voltage applied to the device supply pins)	85	V
	Human Body Model (HBM)	Charged Device Model (CDM)	± 1750			

2.2 Operating range

Table 4. Operating range

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {pos }}$	Positive supply voltage	4.5 to +12	V
$\mathrm{~A} / \mathrm{BGND}$	AGND to BGND	-100 to +100	mV
$\mathrm{V}_{\text {dig }}$	Pin D0, D1, D2, DET, PD	-0.25 to 5.25	V
$\mathrm{~T}_{\text {op }}$	Ambient operating temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {bat }}{ }^{(1)}$	Self generated battery voltage	-64 max.	V

1. Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2. RF1 and RF2 shall be selected in order to fulfil the a.m limits (see Table 10)

2.3 Electrical characteristics

Test conditions: $\mathrm{V}_{\text {pos }}=6.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{BGND}$, Normal Polarity, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.

Note: \quad Testing of all parameter is performed at $25^{\circ} \mathrm{C}$. Characterization as well as design rules used allow correlation of tested performances at other temperatures. All parameters listed here are met in the operating range: -40 to $+85^{\circ} \mathrm{C}$.

Table 5. Electrical characteristics

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
DC characteristics						
$V_{\text {Iohi }}$	Line voltage	$\mathrm{II}=0, \mathrm{HI}-\mathrm{Z}$ (High impedance feeding) $\mathrm{T}_{\mathrm{amb}}=0 \text { to } 85^{\circ} \mathrm{C}$	40	46		V
$V_{\text {Iohi }}$	Line voltage	$\mathrm{II}=0, \mathrm{HI}-\mathrm{Z}$ (High impedance feeding) $\mathrm{T}_{\mathrm{amb}}=-40 \text { to } 85^{\circ} \mathrm{C}$	38	44		V
$V_{\text {loa }}$	Line voltage	$\begin{aligned} & \text { II = }=\text {, ACTIVE } \\ & T_{\text {amb }}=0 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	31	38		V
$V_{\text {loa }}$	Line voltage	$\begin{aligned} & \text { II = } 0, \text { ACTIVE } \\ & T_{\text {amb }}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	+29	35		V
Ilim	Lim. current programming range	ACTIVE mode	20		25	mA
Ilima	Lim. current accuracy	ACTIVE mode. Rel. to programmed value 20 mA to 25 mA	-10		10	\%
Rfeed HI	Feeding resistance	HI-Z (High Impedance feeding)	2.4		3.6	k Ω

AC characteristics

T/L	Transv. to long. (see Appendix A)	$\begin{aligned} & \text { Rp }=50 \Omega 1 \% \text { tol., } \\ & \text { ACTIVE N. P., R } R_{L}=600 \Omega^{(1)} \\ & f=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$	40	45	dB
IL	Transv. to long. (see Appendix A)	$\begin{aligned} & R p=50 \Omega 1 \% \text { tol., } \\ & \text { ACTIVE N. P., } R_{L}=600 \Omega^{(1)} \\ & f=1 \mathrm{kHz} \end{aligned}$	48	53	dB
2WRL	2W return loss	$\begin{aligned} & 300 \text { to } 3400 \mathrm{~Hz} \text {, } \\ & \text { ACTIVE N. P., } R_{L}=600 \Omega^{(1)} \end{aligned}$	22	26	dB
THL	Trans-hybrid loss	$\begin{aligned} & 300 \text { to } 3400 \mathrm{~Hz} \text {, } \\ & 20 \text { Log\|VRX/VTX\|, } \\ & \text { ACTIVE N. P., } R_{L}=600 \Omega^{(1)} \end{aligned}$	30		dB
Ovl	2W overload level	at line terminals on ref. imped. ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$	3.2		dBm

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
TXoff	TX output offset	ACTIVE N. P., $\mathrm{R}_{\mathrm{L}}=600 \Omega^{(1)}$	-250		250	mV
G24	Transmit gain abs.	0dBm @ 1020Hz, ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$	-6.4		-5.6	dB
G42	Receive gain abs.	0dBm @ 1020Hz, ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$	-0.4		0.4	dB
G24f	TX gain variation vs. freq.	$\begin{aligned} & \text { rel. } 1020 \mathrm{~Hz} ; 0 \mathrm{dBm}, \\ & 300 \text { to } 3400 \mathrm{~Hz}, \\ & \text { ACTIVE N. P., } R_{L}=600 \Omega^{(1)} \end{aligned}$	-0.12		0.12	dB
G24f	$R X$ gain variation vs. freq.	$\begin{aligned} & \text { rel. } 1020 \mathrm{~Hz} ; 0 \mathrm{dBm}, \\ & 300 \text { to } 3400 \mathrm{~Hz} \text {, } \\ & \text { ACTIVE N. P., } R_{L}=600 \Omega^{(1)} \end{aligned}$	-0.12		0.12	dB
V2Wp	Idle channel noise at line OdB gainset	psophometric filtered ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$ $\mathrm{T}_{\mathrm{amb}}=0$ to $+85^{\circ} \mathrm{C}$		-73	-68	dBmp
V2Wp	Idle channel noise at line 0dB gainset	psophometric filtered ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$ $\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$		-68		dBmp
V4Wp	Idle channel noise at line OdB gainset	psophometric filtered ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$ $\mathrm{T}_{\mathrm{amb}}=0$ to $+85^{\circ} \mathrm{C}$		-75	-70	dBmp
V4Wp	Idle channel noise at line OdB gainset	psophometric filtered ACTIVE N. P., $R_{L}=600 \Omega^{(1)}$ $\mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C}$		-75		dBmp
Thd	Total Harmonic Distortion	ACTIVE N. P., $\mathrm{R}_{\mathrm{L}}=600 \Omega^{(1)}$			-44	dB
CLKfreq	CLK operating range	-	-10\%	125	10\%	kHz
Ring						
Vring	Line voltage	RING D2 toggling @ fr = 25Hz Load = 2REN; Crest Factor $=1.25$ $1 \text { REN }=1800 \Omega+1.0 \mu \mathrm{~F}$ $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+85^{\circ} \mathrm{C}$	41	45		Vrms
Vring	Line voltage	RING D2 toggling @ fr = 25Hz Load = 2REN; Crest Factor $=1.25$ $1 \mathrm{REN}=1800 \Omega+1.0 \mu \mathrm{~F}$ $T_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C}$	40	44		Vrms

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
Detectors						
IOFFTHA	Off/hook current threshold	ACT. mode, RTH $=32.4 \mathrm{k} \Omega 1 \%$ (Prog. ITH = 9mA)	10.5			mA
ROFTHA	Off/hook loop resistance threshold	ACT. mode, RTH $=32.4 \mathrm{k} \Omega 1 \%$ (Prog. ITH = 9mA)			3.4	k Ω
IONTHA	On/hook current threshold	ACT. mode, RTH $=32.4 \mathrm{k} \Omega 1 \%$ (Prog. ITH = 9mA)			6	mA
RONTHA	On/hook loop resistance threshold	ACT. mode, RTH $=32.4 \mathrm{k} \Omega 1 \%$ (Prog. ITH = 9mA)	8			k Ω
IOFFTHI	Off/hook current threshold	Hi Z mode, RTH = 32.4k $\Omega 1 \%$ (Prog. ITH = 9mA)	10.5			mA
ROFFTHI	Off/hook loop resistance threshold	Hi Z mode, RTH = 32.4k $\Omega 1 \%$ (Prog. ITH = 9mA)			800	S^{Ω}
IONTHI	On/hook current threshold	Hi Z mode, RTH = 32.4k $\Omega 1 \%$ (Prog. ITH = 9mA)			6	mA
RONTHI	On/hook loop resistance threshold	Hi Z mode, RTH = 32.4k $\Omega 1 \%$ (Prog. ITH = 9mA)	8	1		k Ω
Irt	Ring Trip detector threshold range	RING	+20		50	mA
Irta	Ring Trip detector threshold accuracy	RING	-15		15	\%
Trtd	Ring trip detection time	RING		TBD		ms
Td	Dialling distortion	ACTIVE	-1		1	ms
Rirt ${ }^{(1)}$	Loop resistance				500	Ω
ThAI	Tj for th. alarm activation			160		C
Dlgital Interface Inputs: D0, D1, D2, PD, CLK - Outputs: $\overline{\mathrm{DET}}$						
Vih	In put high voltage		2			V
Vil	Input low voltage				0.8	V
lih	Input high current		-10		10	$\mu \mathrm{A}$
(ii)	Input low current		-10		10	$\mu \mathrm{A}$
Vol	Output low voltage	$\mathrm{lol}=1 \mathrm{~mA}$			0.45	V

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
PSRR and power consumption						
PSERRC	Power supply rejection Vpos to 2W port	Vripple $=100 \mathrm{mVrms}$ 50 to 4000 Hz	26	36		dB
Ivpos	Vpos supply current @ II = 0	HI-Z On-Hook ACTIVE On-Hook, RING (line open)		$\begin{aligned} & 13 \\ & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 25 \\ & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
lpk ${ }^{(2)}$	Peak current limiting accuracy	RING Off-Hook RSENSE $=130 \mathrm{~m} \Omega$	-20\%	770	+20\%	mApk

1. $R_{l r t}=$ Maximum loop resistance (incl. telephone) for correct ring trip detection.
2. Buck Boost configuration.

3 Functional description

The STLC3095 is a device specifically developed for WLL VoIP and ISDN-TA applications.
It is based on a SLIC core, on purpose optimized for these applications, with the addition of a DC/DC converter controller to fulfil the WLL and ISDN-TA design requirements.

The SLIC performs the standard feeding, signalling and transmitting functions.
It can be set in three different operating modes via the D0, D1, D2 pins of the control logic interface (0 to 3.3 V logic levels). The loop status is carried out on the DET pin (active low).
The $\overline{\mathrm{DET}}$ pin is an open drain output to allow easy interfacing with both 3.3 V and 5 V logic levels.

The four possible SLIC's operating modes are:

- Power down
- High-impedance feeding (HI-Z)
- Active
- Ringing

Table 6 shows how to set the different SLIC operating modes.
Table 6. SLIC operating modes

PD	D0	D1	D2	Operating mode
0	0	0	X	Power down
1	0	0	X	H.l. feeding (HI-Z)
1	0	1	0	Active normal polarity
1	0	1	1	Active reverse polarity
				Not used
				Not used
1	1	0	$0 / 1$	Ring (D2 bit toggles @ fring)

$3.1 \quad \mathrm{DC} / \mathrm{DC}$ converter

The DC/DC converter controller drives an external power MOS transistor N-Ch plus transformer (Flyback configuration) or P-Ch plus inductor (BuckBoost configuration), in order to generate the negative battery voltage needed for device operation.

The DC/DC converter controller is synchronized with an external CLK (125 kHz typ.) or with an internal clock generated when the pin CLK is connected to CVCC. One $\mathrm{R}_{\text {sense }}$ in series to PGND supply (FlyBack) or to VPOS supply (BuckBoost) allows to fix the maximum allowed input peak current.

This feature is implemented in order to avoid overload on Vpos supply in case of line transient (ex. ring trip detection). The $130 \mathrm{~m} \Omega$ typical value guarantees an average current consumption from Vpos < 600mA for BuckBoost configuration and < 1.25A for Fly- Back configuration.

The $220 \mathrm{~m} \Omega$ typical value guarantees an average current consumption from Vpos $<800 \mathrm{~mA}$ for Fly-Back configuration

The self generated battery voltage is set to a predefined value in on-hook state.
This value can be adjusted via one external resistor (RF1) and it is typical -46V. When RING mode is selected this value is increased to -64V typ.
Once the line goes in off-hook condition, the DC/DC converter automatically adjusts the generated battery voltage in order to feed the line with a fixed DC current (programmable via RLIM) optimizing the power dissipation.

3.2 Operating modes

3.2.1 Power down

When this mode is selected the SLIC is switched off and the TIP and RING pins are in high impedance. Also the line detectors are disabled therefore the off-hook condition cannot be detected. This mode can be selected in emergency condition when it is necessary to cut any current delivered to the line. This mode is also forced by STLC3095 in case of thermal overload ($\mathrm{T}_{\mathrm{j}}>140^{\circ} \mathrm{C}$).
In this case the device goes back to the previous status as soon as the junction temperature decreases under the hysteresis threshold.

No AC transmission is possible.

3.2.2 High impedance feeding (HI-Z)

This operating mode is normally selected when the telephone is in on-hook in order to monitor the line status keeping the power consumption at the minimum.

The output voltage in on-hook condition is equal to the self generated battery voltage (-46V typ).
When off-hook occurs the $\overline{\text { DET }}$ becomes active (low logic level).
The off-hook threshold values in $\mathrm{HI}-\mathrm{Z}$ mode is the same as the programmed value in ACTIVE mode.

The DC characteristic in $\mathrm{HI}-\mathrm{Z}$ mode is just equal to the self generated battery with $2 x(1600 \Omega+R p)$ in series (see Figure 3), where Rp is the external protection resistance.
No AC transmission is possible.
Figure 3. DC characteristic in $\mathrm{HI}-\mathrm{Z}$ mode.

3.2.3 Active

DC characteristics \& supervision

When this mode is selected the STLC3095 provides both DC feeding and AC transmission.
The STLC3095 feeds the line with a constant current fixed by RLIM (20 mA to 25 mA range). The on-hook voltage is typically 38 V allowing on-hook transmission; the self generated Vbat is 46 V typ.

If the loop resistance is very high and the line current cannot reach the programmed constant current feed value, the STLC3095 behaves like a 38 V voltage source with a series impedance equal to the protection resistors $2 \times R p$ (typ. $2 \times 50 \Omega$). Figure 4 shows the typical DC characteristic in ACTIVE mode.

The line status (on/off hook) is monitored by the SLIC'S supervision circuit. The off-hook threshold can be programmed via the external resistor RTH in the range from 5 mA to 9 mA .
Independently on the programmed constant current value, the TIP and RING buffers have a current source capability limited to 65mA typ.

Figure 4. DC characteristic in ACTIVE mode

Moreover the power available at Vbat is controlled by the DC/DC converter that limits the peak current drawn from the Vpos supply. The maximum allowed current peak is set by $\mathrm{R}_{\text {SENSE }}$ resistor.

AC characteristics

The SLIC provides the standard SLIC transmission functions:
Once in active mode the SLIC can operate with two different Tx, Rx gains respectively set by the gain set control bit (see Table 7).

Table 7. Gain set in active mode

Gain set	$\mathbf{4}$ to $\mathbf{2}$ wire gain	2 to $\mathbf{4}$ wire gain	Impedance synthesis scale factor
0	0 dB	-6 dB	$\times 50$
1	+6 dB	-12 dB	$\times 25$

- Input impedance synthesis: can be real or complex and is set by a scaled (x50 or x25) external ZAC impedance.
- Transmit and receive: The AC signal present on the 2W port (TIP/RING) is transferred to the TX output with a -6 dB or -12 dB gain and from the RX input to the 2 W port with a 0 dB or +6 dB gain.
- 2 to $\mathbf{4}$ wire conversion: The balance impedance can be real or complex, the proper cancellation is obtained by means of two external impedance ZA and ZB

Once in Active mode (D1=1) the SLIC can operate in different states setting properly D0 and D2 control bits (see also Table 8).

Table 8. SLIC states in ACTIVE mode

D0	D1	D2	Operating mode
0	1	0	Active Normal Polarity
0	1	1	Active Reverse Polarity

Polarity reversal

The D2 bit controls the line polarity, the transition between the two polarities is performed in a "soft" way. This means that the TIP and RING wire exchange their polarities following a ramp transition (see Figure 5).
The transition time is controlled by an external capacitor CREV. This capacitor also sets the shape of the ringing trapezoidal waveform. When the control pins set battery reversal the line polarity is reversed with a proper transition time set via an external capacitor (CREV).

Figure 5. TIP/RING typical transition from direct to reverse polarity

3.2.4 Ringing

When this mode is selected the STLC3095 self generates an higher negative battery (-64V typ.) in order to allow a balanced ringing signal of typically 59Vpeak.

In this condition both the DC and AC feedback loops are disabled and the SLIC line drivers operate as voltage buffers. The ring waveform is obtained toggling the D2 control bit at the desired ring frequency. This bit controls the line polarity ($0=$ direct; $1=$ reverse).

As in the ACTIVE mode the line voltage transition is performed with a ramp transition, creating a trapezoidal balanced ring waveform (see Figure 6).

The shaping is defined by the CREV external capacitor.

Figure 6. TIP/RING typical ringing waveform

By selecting the proper capacitor value it is possible to get different crest factor values.
The following table shows the crest factor values obtained with a 20 Hz and 25 Hz ring frequency and with 1REN. These value are valid either with European or USA specification:

Table 9. Crest factors

CREV	CREST factor @20Hz	CREST factor @25Hz
22 nF	1.2	1.26
27 nF	1.25	1.32
33 nF	1.33	Not significant ${ }^{(1)}$

1. Distortion already less than 10%.

The ring trip detection is performed by sensing the variation of the AC line impedance from on hook (relatively high) to off-hook (low). This particular ring trip method allows to operate without DC offset superimposed on the ring signal. Therefore the maximum possible ring level on the load is obtained, starting from a given negative battery.

It should be noted that such a method is optimized for operation on short loop applications and may not operate properly in the presence of long loop applications (>500).
Once ring trip is detected, the $\overline{\mathrm{DET}}$ output is activated (logic level low), at this point the card controller or a simple logic circuit should stop the D2 toggling in order to effectively disconnect the ring signal and then set the STLC3095 in the proper operating mode (normally ACTIVE).

Ring level in presence of more telephone in parallel

As already mentioned above the maximum current that can be drawn from the Vpos supply is controlled and limited via the external RSENSE.

This also limits the power available at the self generated negative battery.
If for any reason the ringer load is too low the self generated battery drops in order to keep the power consumption to the fixed limit. Consequently, the ring voltage level is also reduced.

In the typical Buck Boost configuration with $\mathrm{R}_{\text {SENSE }}=130 \mathrm{~m} \Omega$ the peak current from Vpos is limited to about 770 mA , which corresponds to an average current of 600 mA max. In this condition the STLC3095 can drive up to 2REN with a ring frequency fr= 25 Hz (1 REN $=1800 \Omega+1.0 \mu \mathrm{~F}$, European standard).
In Fly-Back configuration the value of $\mathrm{R}_{\text {SENSE }}=220 \mathrm{~m} \Omega$ matches both the European and USA standards.

3.2.5 Layout recommendation

A properly designed PCB layout is a basic issue to guarantee a correct behavior and good noise performances.
Particular care must be taken on the ground connection and in this case the star configuration allows surely to avoid possible problems (see Application Diagram Figure 7 and Figure 8).

The ground of the power supply (VPOS) has to be connected to the center of the star, named SYSTEM-GND. This point should show a resistance as low as possible, that means it should be a ground plane.

To avoid noise problems the layout should prevent any coupling between the DC/DC converter components and analog pins that are referred to AGND (ex: RD, IREF, RTH, RLIM, VF). As a first recommendation the components CV, L, T1, D1, CVPOS, RSENSE should be kept as close as possible to each other and isolated from the other components.
Additional improvements can be obtained:

- by decoupling the center of the star from the analog ground of STLC3095 using small chokes,
- by adding a capacitor in the range of 100 nF between VPOS and AGND in order to filter the switch frequency on VPOS.

3.2.6 External components list

In order to properly define the external components value the following system parameters have to be defined:

- the AC input impedance shown by the SLIC at the line terminals "Zs" to which the return loss measurement is referred. It can be real (typ. 600) or complex.
- the AC balance impedance, it is the equivalent impedance of the line "Zl" used for evaluation of the trans-hybrid loss performances (2/4 wire conversion). It is usually a complex impedance.
- the value of the two protection resistors Rp in series with the line termination,
- the slope of the ringing waveform " $\Delta \mathrm{V}_{\mathrm{TR}} / \Delta_{\top}$ ",
- the value of the constant current limit current "Ilim",
- the value of the off-hook current threshold "I TH ",
- the value of the ring trip rectified average threshold current " $\mathrm{I}_{\text {RTH }}$ ",
- the value of the required self generated negative battery " $\mathrm{V}_{\text {BATR }}$ " in ring mode (max value is 64 V). This value can be obtained from the desired ring peak level +5 V .
- the value of the maximum current peak drawn from Vpos "IPK".

Table 10. External components for buckboost configuration

Name	Function	Formula	Typ. value
RRX	Rx input bias resistor	$100 \mathrm{k} \Omega 5 \%$	
RREF	Bias setting current	RREF $=1.3 / \mathrm{lbias}$ lbias $=50 \mu \mathrm{~A}$	$26 \mathrm{k} \Omega 1 \%$
CSVR	Negative Battery Filter	$\mathrm{CSVR}=1 /(2 \pi \cdot \mathrm{fp} \cdot 1.8 \mathrm{M} \Omega)$ $\mathrm{fp}=50 \mathrm{~Hz}$	$1.5 \mathrm{nF} 10 \%$ 100 V

Table 10. External components for buckboost configuration

Name	Function	Formula	Typ. value
RD	Ring Trip threshold setting resistor	$\begin{aligned} & \mathrm{RD}=100 / \mathrm{I}_{\mathrm{RTH}} \\ & 2 \mathrm{~K} \Omega<\mathrm{RD}<5 \mathrm{~K} \Omega \end{aligned}$	$\begin{gathered} 4.12 \mathrm{k} \Omega 1 \% \\ @ \text { IRTH }=24 \mathrm{~mA} \end{gathered}$
CAC	AC/DC split capacitance		$\begin{aligned} & 22 \mu \mathrm{~F} 20 \% 15 \mathrm{~V} \\ & @ \mathrm{RD}=4.12 \mathrm{k} \Omega \end{aligned}$
RP	Line protection resistor	$R p>30 \Omega$	$50 \Omega 1 \%$
RLIM	Current limiting programming	$\begin{aligned} & \text { RLIM }=1300 / \mathrm{llim} \\ & 32.5 \mathrm{k} \Omega<\text { RLIM }<65 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 52.3 \mathrm{k} \Omega 1 \% \\ @ \operatorname{llim}=25 \mathrm{~mA} \end{gathered}$
RTH	Off-hook threshold programming (ACTIVE mode)	$\begin{aligned} & \mathrm{RTH}=290 / \mathrm{I}_{\mathrm{TH}} \\ & 27 \mathrm{k} \Omega<\mathrm{RTH}<52 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 32.4 \mathrm{k} \Omega 1 \% \\ @ \mathrm{l}_{\mathrm{TH}}=9 \mathrm{~mA} \end{gathered}$
CREV	Reverse polarity transition time programming	CREV $=\left((1 / 3750) \cdot \Delta \mathrm{T} / \Delta \mathrm{V}_{\text {TR }}\right)$	$22 n F 10 \% 10 \mathrm{~V}$ @ 12V/ms
RDD	Pull up resistors		$100 \mathrm{k} \Omega$
CVCC	Internally supply filter capacitor		100nF 20\% 10V
CVpos ${ }^{(1)}$	Positive supply filter capacitor with low impedance for switch mode power supply		$100 \mu \mathrm{~F}$
$C V^{(2)}$	Battery supply filter capacitor with low impedance for switch mode power supply		$100 \mu \mathrm{~F} 20 \% 100 \mathrm{~V}$
CVB	High frequency noise filter		470nF 20\% 100V
$\mathrm{CRD}^{(3)}$	High frequency noise filter		100nF 10\% 15V
Q1	DC/DC converter switch P ch. MOS transistor	RDS(ON) $4.2 \Omega \mathrm{VDS}=-100 \mathrm{~V}$ Total gate charge $=20 \mathrm{nC}$ max. with VGS=4.5V and VDS=1V ID $>500 \mathrm{~mA}$	Possible choices: IRF9510 or IRF9520 or IRF9120 or equivalent
D1	DC/DC converter series diode	$\mathrm{V}_{\mathrm{r}}>100 \mathrm{~V}, \mathrm{t}_{\mathrm{RR}} \leq 50 \mathrm{~ns}$	SMBYW01-200 or equivalent
RSENSE	DC/DC converter peak current limiting	$\mathrm{R}_{\text {SENSE }}=100 \mathrm{mV} / \mathrm{l}_{\text {PK }}$	$\begin{gathered} 130 \mathrm{~m} \Omega \\ @ \mathrm{I}_{\mathrm{PK}}=770 \mathrm{~mA} \end{gathered}$
RF1	Negative battery programming level	250K \ll RF1<270K Ω	$\begin{gathered} 270 \mathrm{k} \Omega 1 \% \\ @ \mathrm{~V}_{\text {BATR }}=-64 \mathrm{~V} \end{gathered}$
RF2	Negative battery programming level		9.1k 1 1\%
$L^{(4)}$	DC/DC converter inductor	DC resistance $\leq 0.1 \Omega$	$\mathrm{L}=100 \mu \mathrm{H}$ SUMIDA CDRH125 or equivalent

1. CVpos should be defined depending on the power supply current capability and maximum allowable ripple.
2. For low ripple application use $2 \times 47 \mu \mathrm{~F}$ in parallel.
3. Can be saved if proper PCB layout avoid noise coupling on RD pin (high impedance input).
4. For high efficiency in HI-Z mode coil resistance @125kHz must be $<3 \Omega$

Table 11. External components for flyback configuration

Name	Function	Formula	Typ. value
RRX	Rx input bias resistor		100k 3 \%
RREF	Bias setting current	RREF $=1.3 / \mathrm{lbias} ; \mathrm{lbias}=50 \mu \mathrm{~A}$	26k ${ }^{\text {1\% }}$
CSVR	Negative Battery Filter	$\text { CSVR }=1 /(2 \pi \cdot f p \cdot 1.8 \mathrm{M} \Omega)$ $\mathrm{fp}=50 \mathrm{~Hz}$	$\begin{gathered} 1.5 \mathrm{nF} 10 \% \\ 100 \mathrm{~V} \end{gathered}$
RD	Ring Trip threshold setting resistor	$\begin{aligned} & \mathrm{RD}=100 / \mathrm{I}_{\mathrm{RTH}} \\ & 2 \mathrm{~K} \Omega<\mathrm{RD}<5 \mathrm{~K} \Omega \end{aligned}$	$\begin{gathered} 4.12 \mathrm{k} \Omega 1 \% \\ @ \text { IRTH }=24 \mathrm{~mA} \end{gathered}$
CAC	AC/DC split capacitance		$\begin{aligned} & 22 \mu \mathrm{~F} 20 \% 15 \mathrm{~V} \\ & @ \mathrm{RD}=4.12 \mathrm{k} \Omega \end{aligned}$
RP	Line protection resistor	$R p>30 \Omega$	$50 \Omega 1 \%$
RLIM	Current limiting programming	$\begin{aligned} & \text { RLIM }=1300 / \mathrm{llim} \\ & 52.3 \mathrm{k} \Omega<\text { RLIM }<65 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 52.3 \mathrm{k} \Omega 1 \% \\ @ \operatorname{llim}=25 \mathrm{~mA} \end{gathered}$
RTH	Off-hook threshold programming (ACTIVE mode)	$\begin{aligned} & \mathrm{RTH}=290 / \mathrm{I}_{\mathrm{TH}} \\ & 27 \mathrm{k} \Omega<\mathrm{RTH}<52 \mathrm{k} \Omega \end{aligned}$	$32.4 \mathrm{k} \Omega$ 1\% $@ ।_{T H}=9 \mathrm{~mA}$
CREV	Reverse polarity transition time programming	CREV $=\left((1 / 3750) \cdot \Delta \mathrm{T} / \Delta \mathrm{V}_{\text {TR }}\right)$	$22 n F 10 \% 10 \mathrm{~V}$ @ 12V/ms
RDD	Pull up resistors		$100 \mathrm{k} \Omega$
CVCC	Internally supply filter capacitor		100nF 20\% 10V
CVpos ${ }^{(1)}$	Positive supply filter capacitor with low impedance for switch mode power supply		100 $\mu \mathrm{F}$
$C V^{(2)}$	Battery supply filter capacitor with low impedance for switch mode power supply		100 $\mu \mathrm{F} 20 \% 100 \mathrm{~V}$
CVB	High frequency noise filter		470nF 20\% 100V
$C R D^{(3)}$	High frequency noise filter	O	100 nF 10\% 15V
CZ	Fly-Back compensation capacitor		2.2nF, 20\%
CSF	Sense Filter capacitor		120pF, 20\%
RSF	Sense Filter resistor		$1 \mathrm{k} \Omega$
RSENSE	DC/DC converter peak current limiting	$\mathrm{R}_{\text {SENSE }}=375 \mathrm{mV} / \mathrm{l}_{\text {PK }}$	$220 \mathrm{~m} \Omega$ @ $\mathrm{l}_{\mathrm{PK}}=1.7 \mathrm{~A}$
Q1	DC/DC converter switch N -channel MOS transistor	RDS(ON) $\otimes .05 \Omega$ VDSS $=30 \mathrm{~V}$ VDG=30V, ID = 6.5A Low threshold drive	STN4NF03L or equivalent
D1	DC/DC converter series diode	$\mathrm{V}_{\mathrm{r}}>350 \mathrm{~V}, \mathrm{t}_{\mathrm{RR}} \leq 80 \mathrm{~ns}$	SMBYTW01-400 or equivalent
T1	DC/DC Converter transformer	Fly-Back transformer 4W, Turns Ratio 1:16 fro VPOS range from 4.5 V to 8.5 V	Tyco COEV MAGNETICS MGPWG-00007 or Coilcraft FA2469-AL

Table 11. External components for flyback configuration (continued)

Name	Function	Formula	Typ. value
T1	DC/DC Converter transformer	Fly-Back transformer 4W, Turns Ratio 1:8 fro VPOS range from 8.5 V to 12 V	Tyco COEV MAGNETICS MGPWG-00008 or Coilcraft FA2470-AL
RF1	Negative battery programming level	$250 \mathrm{~K} \Omega<R F 1<270 \mathrm{~K} \Omega$	$270 \mathrm{k} \Omega 1 \% @ V_{\text {BATR }}=-64 \mathrm{~V}$
RF2	Negative battery programming level		$9.1 \mathrm{k} \Omega 1 \%$

Table 12. Gain set for flyback and buckboost configurations

Name	Function	Formula	Typ. value
@ Gain Set = 0			
RS	Protection resistance image	RS $=50 \cdot(2 R p)$	$5 \mathrm{k} \Omega$ @ Rp $=50 \Omega$
ZAC	Two wire AC impedance	ZAC $=50 \cdot(Z \mathrm{~s}-2 R \mathrm{p})$	$25 \mathrm{k} \Omega 1 \%$ @ $\mathrm{zs}=600 \Omega$
ZA ${ }^{(1)}$	SLIC impedance balancing network	$\mathrm{ZA}=50 \cdot \mathrm{Zs}$	$30 \mathrm{k} \Omega 1 \% @ \mathrm{Zs}=600 \Omega$
ZB ${ }^{(5)}$	Line impedance balancing network	$\mathrm{ZB}=50 \cdot \mathrm{Zl}$	$30 \mathrm{k} \Omega$ 1\% @ ZI = 600Ω
CCOMP	AC feedback loop compensation	$\begin{aligned} & \mathrm{fo}=250 \mathrm{kHz} \\ & \mathrm{CCOMP}=1 /(2 \pi \cdot \text { fo } \cdot 100 \cdot(\mathrm{RP})) \end{aligned}$	$\text { 120pF 10\% 10V @ Rp = } 50 \Omega$
CH	Trans-Hybrid Loss frequency compensation	$\mathrm{CH}=\mathrm{CCOMP}$	120pF 10\% 10V
@Gain Set = 1			
RS	Protection resistance image	RS $=25 \cdot(2 R p)$	$2.55 \mathrm{k} \Omega$ @ Rp $=50 \Omega$
ZAC	Two wire AC impedance	$Z A C=25 \cdot(Z s-2 R p)$	$12.5 \mathrm{k} \Omega 1 \%$ @ Zs = 600
ZA ${ }^{(5)}$	SLIC impedance balancing network	$Z A=25 \cdot Z s$	$15 \mathrm{k} \Omega 1 \%$ @ $\mathrm{Zs}=600 \Omega$
Z ${ }^{(5)}$	Line impedance balancing network	ZB = 25. ZI	15k 1% @ ZI = 600
CCOMP	AC feedback loop compensation	$\begin{aligned} & \mathrm{fo}=250 \mathrm{kHz} \\ & \mathrm{CCOMP}=2 /(2 \pi \cdot \text { fo } \cdot 100 \cdot(\mathrm{RP})) \end{aligned}$	220pF 10\% 10VL @ Rp = 50
CH	Trans-Hybrid Loss frequency compensation	$\mathrm{CH}=\mathrm{CCOMP}$	220pF 10\% 10V

[^0]
4 Applications diagram

Figure 7. Application diagram with N -channel

Figure 8. Application diagram with P-channel

Appendix A STLC3095 test circuits

Referring to the application diagram shown in Figure 11 and using as external components the typical values specified in Table 10, the proper configuration for each measurement is given below.

All measurements requiring DC current termination should be performed using "Wandel \& Goltermann DC Loop Holding Circuit GH-1" or equivalent.

Figure 9. 2 LW Return loss $-2 W R L=20 \log (|Z r e f+Z s| / / Z r e f-Z s \mid)=20 \log (E / 2 V s)$

Figure 10. THL Trans Hybrid Loss - THL = 20Log/Vrx/Vtx/

Figure 11. G24 Transmit Gain - G24 = 20Logl2Vtx/E/

Figure 12. G42 Receive Gain - G42 = 20Log/VI/VrxI

Figure 13. PSRRC Power supply rejection Vpos to 2 W port - PSSRC $=20 \mathrm{Log} / \mathrm{Vn} / \mathrm{VII}$

Figure 14. T/L Transversal to Longitudinal Conversion - T/L = 20Log/Vrx/Vcm/

Figure 15. V2Wp and W4Wp: Idle channel psophometric noise at line and TX.
V2Wp = 20Log/VI/0.774II; V4Wp = 20Log/Vtx/0.774II

Appendix B STLC3095 over voltage protection

Figure 16. Simplified configuration for indoor over voltage protection

Figure 17. Standard over voltage protection configuration for K20 compliance

Appendix C Typical state diagram for STLC3095 operation

Figure 18. Typical state diagram for STLC3095 operation

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97.

The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 19. TQFP44 ($10 \times 10 \times 1.4 \mathrm{~mm}$) mechanical data \& package dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
B	0.30	0.37	0.45	0.012	0.015	0.018
C	0.09		0.20	0.004		0.008
D	11.80	12.00	12.20	0.464	0.472	0.480
D1	9.80	10.00	10.20	0.386	0.394	0.401
D3		8.00			0.315	
E	11.80	12.00	12.20	0.464	0.472	0.480
E1	9.80	10.00	10.20	0.386	0.394	0.401
E3		8.00			0.315	
e		0.80			0.031	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k		$0{ }^{\circ}(m i n),. 3.5^{\circ}$ (typ.), 7° (max.)				

TQFP44 ($10 \times 10 \times 1.4 \mathrm{~mm}$)

6 Ordering information

Table 13. Order codes

Part number	Temp range, ${ }^{\circ} \mathbf{C}$	Package	Packing
E-STLC3095 ${ }^{(1)}\left({ }^{\star}\right)$	-40 to 85	TQFP44	Tube

1. ECOPACK® (see Section 5)

7 Revision history

Table 14. Document revision history

Date	Revision	Changes	
$08-$ Feb-2007	1	Initial release.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

[^0]: 1. In case $Z s=Z I, Z A$ and $Z B$ can be replaced by two resistors of same value: $R A=R B=|Z s|$.
