

STS5N15M3

N-channel 150 V, 45 mΩ 5 A, SO-8 ultra low gate charge MDmesh™ III Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STS5N15M3	150 V	< 0.057 Ω	5 A

- Low on-resistance
- Low input capacitance and gate charge
- Low gate input resistance
- High dv/dt avalanche capabilities

Application

Switching applications

Description

This device is realized with the third generation of MDmesh[™] technology. This Power MOSFET associates an improved vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

101

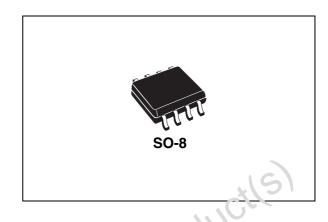


Figure 1. Internal schematic diagram

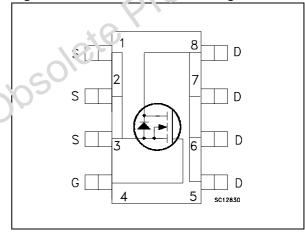


Table 1. Device summary

Gruer code	Marking	Package	Packaging
STS5N15M3	5R15-	SO-8	Tape and reel

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data9
5	Revision history
00504	Revision history

Electrical ratings 1

Table 2.	Absolute	maximum	ratings
	Abounde	IIIuAIIIIuIII	runngo

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	150	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25 °C	5	Α
I _D	Drain current (continuous) at T _C =100 °C	3.2	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	20	А
P _{TOT}	Total dissipation at $T_C = 2.5^{\circ}C$	2.5	W
T _{stg}	Storage temperature	-55 to 150	ာ
Тj	Operating junction temperature	-55 10 150	
1. Pulse wid [.] Table 3.	th limited by safe operating area	A JCt (S	51
Symbol	Parameter	Value	Unit

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	50	°C/W

1. When mounted on FR-4 board of 1 inch², 2 oz Cu, t < 10 sec

Avalanche characteristics Table 4.

	Symbol	Parameter	Max value	Unit
	I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	2.5	А
	E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AS}$, $V_{DD} = 140 \text{ V}$)	1.6	J
obsole	steP			

Electrical characteristics 2

 $(T_J = 25 \ ^{\circ}C \text{ unless otherwise specified})$

_					
Parameter	Test conditions	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	150			V
Zero gate voltage drain current ($V_{GS} = 0$)	V _{DS} = 150 V, V _{DS} = 150 V, @125 °C			1 10	μΑ μΑ
Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			±100	nA
Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2		4	V
Static drain-source on resistance	V _{GS} = 10 V, I _D = 2.5 A		0.045	0.057	Ω
Dynamic			90		
	Drain-source breakdown voltage Zero gate voltage drain current ($V_{GS} = 0$) Gate body leakage current ($V_{DS} = 0$) Gate threshold voltage Static drain-source on resistance	Drain-source breakdown voltage $I_D = 1 \text{ mA}, V_{GS} = 0$ Zero gate voltage drain current ($V_{GS} = 0$) $V_{DS} = 150 \text{ V},$ $V_{DS} = 150 \text{ V}, @ 125 °C$ Gate body leakage current ($V_{DS} = 0$) $V_{GS} = \pm 20 \text{ V}$ Gate threshold voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ Static drain-source on resistance $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$	Drain-source breakdown voltage $I_D = 1 \text{ mA}, V_{GS} = 0$ 150Zero gate voltage drain current ($V_{GS} = 0$) $V_{DS} = 150 \text{ V},$ $V_{DS} = 150 \text{ V}, @ 125 °C$ 150Gate body leakage current ($V_{DS} = 0$) $V_{GS} = \pm 20 \text{ V}$ 2Gate threshold voltage $V_{DS} = V_{GS}, I_D = 250 \mu A$ 2Static drain-source on resistance $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$ 2	Drain-source breakdown voltageID= 1 mA, VGS= 0150Zero gate voltage drain current (VGS = 0)VDS = 150 V, VDS = 150 V, @ 125 °CImage: Comparison of the text of text	Drain-source breakdown voltageIDI mA, VGS = 0150IZero gate voltage drain current (VGS = 0) $V_{DS} = 150 \text{ V},$ $V_{DS} = 150 \text{ V}, @ 125 °C11Gate body leakage current(VDS = 0)V_{GS} = \pm 20 \text{ V}110Gate threshold voltageV_{DS} = V_{GS}, I_D = 250 \ \mu\text{A}24Static drain-source onresistanceV_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}0.0450.057$

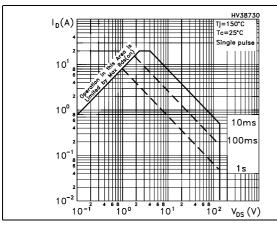
Table 5. **On/off states**

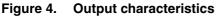
Table 6. Dvnamic

	Dynamic					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 V$, f = 1 MHz, $V_{GS} = 0$		1300 140 20.5		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 5 \text{ A}$ $V_{GS} = 10 \text{ V}$ Figure 14 on page 8		29 3.6 14.6		nC nC nC
Rg	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level=20 mV open drain		3.7		Ω
teP						

	owneeling amoo					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 75 V, I_{D} = 2.5 A, R _G =4.7 Ω , V _{GS} =10 V <i>Figure 13 on page 8</i>		9 13 46 20		ns ns ns ns

Table 7. Switching times


Table 8. Source drain diode


Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				5	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				20	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 5 \text{ A}, V_{GS} = 0$			1.3	~
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 5 A, di/dt = 100 A/μs, V _R = 40 V, T _J = 150 °C <i>Figure 15 on page 8</i>		110 498 9.1		ns nC A
	dth limited by safe operating area pulse duration=300µs, duty cycle 1.5	5% Dosolete				
	roducils					

57

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area

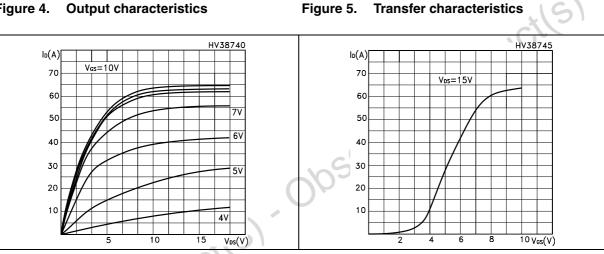


Figure 3.

Thermal impedance

0.05

0.01

10⁰

SINGLE PULSE

10⁻¹

0.02 Z_{thj-pcb} = kR_{thj-pcl}

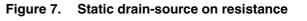
 $\delta = t_p / \tau$ R_{thj-pcb}=60°C/W

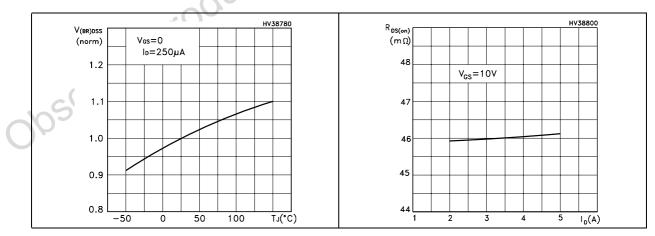
tp L

10¹ + p (s)

 $\delta = 0.5$

0.2 ٥.

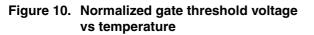

к

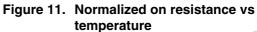

10 -

10⁻²

10⁻²

Normalized BV_{DSS} vs temperature Figure 6.

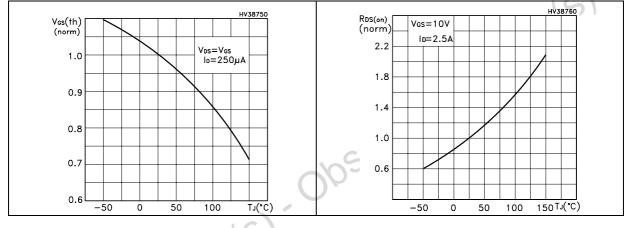
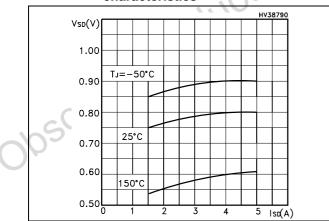
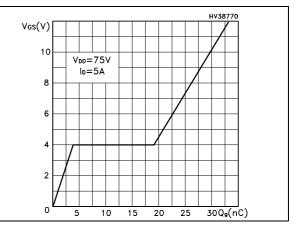




57

HV38810 C(pF) f=1MHz $V_{GS}=0V$ 5000 4000 3000 2000 Cis 1000 C. 30 0 40 50 Vos(V) 10 20

Figure 8. Capacitance variations

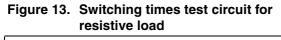

Figure 12. Source-drain diode forward characteristics

Figure 9. Gate charge vs gate-source voltage

3 Test circuit

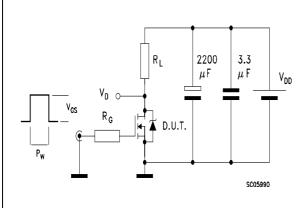
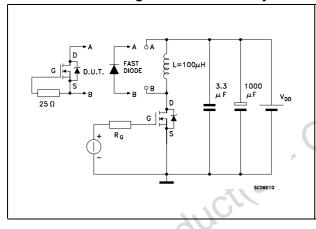



Figure 15. Test circuit for inductive load switching and diode recovery times

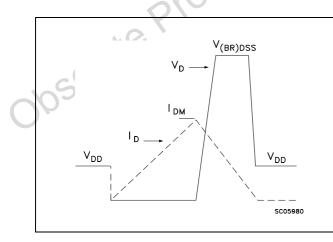
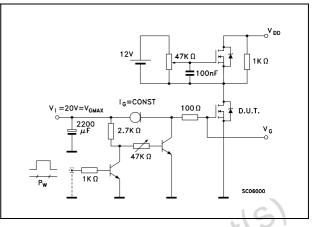
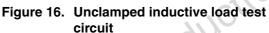




Figure 14. Gate charge test circuit

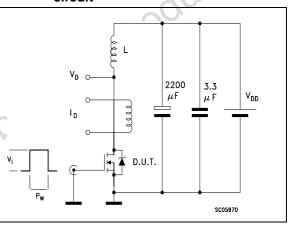
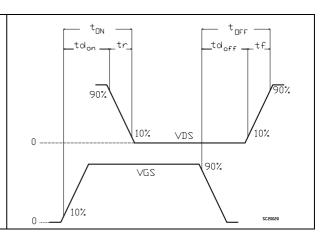
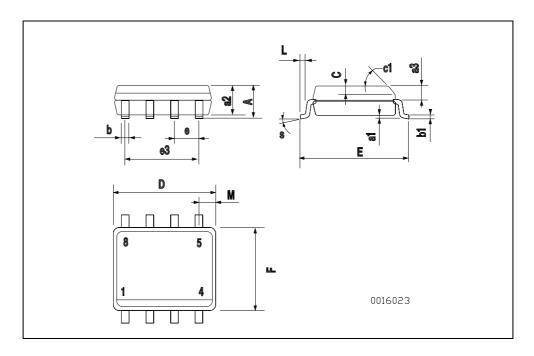



Figure 18. Switching time waveform

57

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

obsolete Product(s). Obsolete Product(s)

57

DIM.		mm.			inch		
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX	
А			1.75			0.068	
a1	0.1		0.25	0.003		0.009	
a2			1.65			0.064	
a3	0.65		0.85	0.025		0.033	
b	0.35		0.48	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.019	
c1		•	45 ((typ.)	•	•	
D	4.8		5.0	0.188		0.196	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.14		0.157	
L	0.4		1.27	0.015		0.050	
М			0.6			0.023	

SO-8 MECHANICAL DATA

57

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
02-Apr-2007	1	First release
25-Jun-2008	2	Modified values in Table 6: Dynamic

obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

