N-channel 650 V-1 Ω-6.4 A TO-220 / TO-220FP Zener-protected SuperMESH ${ }^{\text {TM }}$ Power MOSFET

Features

Type	$\mathbf{V}_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{D}}$	Pw
STP9NK65ZFP	650 V	$<1.2 \Omega$	6.4 A	125 W
STP9NK65Z	650 V	$<1.2 \Omega$	6.4 A	30 W

■ Extremely high dv/dt capability
■ 100% avalanche tested

- Gate charge minimized

■ Very low intrinsic capacitances

- Very good manufacturing repeatability

Application

■ Switching applications

Description

The SuperMESH ${ }^{\text {TM }}$ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH ${ }^{\text {TM }}$ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh ${ }^{\text {TM }}$ products.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STP9NK65ZFP	P9NK65ZFP	TO-220FP	Tube
STP9NK65Z	P9NK65Z	TO-220	Tube

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 9
4 Package mechanical data 10
5 Revision history 13

Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value		Unit
		TO-220	TO-220FP	
V_{DS}	Drain-source voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0\right)$	650		V
V_{GS}	Gate- source voltage	± 30		V
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	6.4	$6.4{ }^{(1)}$	A
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	4	$4^{(1)}$	A
$\mathrm{I}_{\mathrm{DM}}{ }^{(2)}$	Drain current (pulsed)	25.6	$25.6{ }^{(1)}$	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	125	30	W
	Derating factor	1	0.24	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }(\mathrm{G}-\mathrm{S})}$	Gate source ESD(HBM-C=100 pF, R=1.5 k 2)	4000		V
$\mathrm{dv} / \mathrm{dt}{ }^{(3)}$	Peak diode recovery voltage slope	4.5		V/ns
$\mathrm{V}_{\text {ISO }}$	Insulation withstand voltage (DC)	-	2500	V
$\begin{gathered} \mathrm{T}_{\mathrm{j}} \\ \mathrm{~T}_{\mathrm{stg}} \\ \hline \end{gathered}$	Operating junction temperature Storage temperature	-55 to 150		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

1. Limited only by maximum temperature allowed
2. Pulse width limited by safe operating area
3. $\mathrm{I}_{\mathrm{SD}} \leq 6.4 \mathrm{~A}$, di/dt $\leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq 80 \% \mathrm{~V}_{\text {(BR) }}$ DSS

Table 3. Thermal data

Symbol	Parameter	Value		Unit
		TO-220	TO-220FP	
Rthj-case	Thermal resistance junction-case max	1	4.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal resistance junction-ambient max	62.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{I}	Maximum lead temperature for soldering purpose	300		${ }^{\circ} \mathrm{C}$

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	6.4	A
E_{AS}	Single pulse avalanche energy (starting $\left.\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}\right)$	200	mJ

2 Electrical characteristics

($\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source breakdown voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	650			V
$\mathrm{I}_{\mathrm{DSS}}$	Zero gate voltage drain current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=$ Max rating $\mathrm{V}_{\mathrm{DS}}=$ Max rating, $@ 125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{GSS}}$	Gate-body leakage current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{GS} \text { (th) }}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	3	3.75	4.5	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static drain-source on resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.2 \mathrm{~A}$		1	1.2	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{gfs}^{(1)}$	Forward transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.2 \mathrm{~A}$		6		S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\mathrm{oss}} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	Input capacitance Output capacitance Reverse transfer capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$		$\begin{gathered} 1145 \\ 130 \\ 28 \end{gathered}$		pF pF pF
$\mathrm{Cossseq}^{(2)}$.	Equivalent output capacitance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=0$ to 400 V		55		pF
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total gate charge Gate-source charge Gate-drain charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=520 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.4 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 18) } \end{aligned}$		$\begin{gathered} 41 \\ 7.5 \\ 22 \end{gathered}$		$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

1. Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%
2. $\mathrm{C}_{\text {oss eq. }}$ is defined as a constant equivalent capacitance giving the same charging time as $\mathrm{C}_{\text {oss }}$ when V_{DS} increases from 0 to $80 \% V_{\text {DSS }}$

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \mathrm{t}_{\mathrm{d}(\mathrm{on})} \\ \mathrm{t}_{\mathrm{r}} \end{gathered}$	Turn-on delay time Rise time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=325 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.2 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 17) } \end{aligned}$		$\begin{aligned} & 20 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{d}(\text { off })} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Turn-off delay time Fall time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=325 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.2 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & (\text { See Figure 17) } \end{aligned}$		$\begin{aligned} & 45 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\underset{\mathrm{I}_{\mathrm{SDM}}{ }^{(1)}}{\mathrm{I}_{\mathrm{SD}}}$	Source-drain current Source-drain current (pulsed)				$\begin{gathered} \hline 6.4 \\ 25.6 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\mathrm{SD}}{ }^{(2)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=6.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.6	V
t_{rr} $Q_{r r}$ $I_{\text {RRM }}$	Reverse recovery time Reverse recovery charge Reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=6.4 \mathrm{~A}, \\ & \text { di/dt }=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see Figure 19) } \end{aligned}$		$\begin{gathered} 400 \\ 2600 \\ 13 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mathrm{nC} \\ \mathrm{~A} \end{gathered}$

1. Pulse width limited by safe operating area.
2. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

Table 9. Gate-source zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
BV $_{\text {GSO }^{(1)}}{ }^{(1)}$	Gate-source breakdown voltage	Igs $= \pm 1 \mathrm{~mA}$ (open drain)	30			V

1. The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220

Figure 4. Safe operating area for TO-220FP

Figure 3. Thermal impedance for TO-220

Figure 5. Thermal impedance for TO-220FP

Figure 6. Output characteristics

Figure 7. Transfer characteristics

Figure 8. Transconductance
Figure 9. Static drain-source on resistance

Figure 10. Gate charge vs gate-source voltage Figure 11. Capacitance variations

Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized on resistance vs temperature

Figure 14. Source-drain diode forward characteristics

Figure 15. Normalized $\mathrm{BV}_{\text {DSS }}$ vs temperature

Figure 16. Maximum avalanche energy vs temperature

3 Test circuits

Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit

Figure 19. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive waveform

Figure 20. Unclamped Inductive load test circuit

Figure 22. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Dim	mm			inch		
	Min	Typ	Max	Min	Typ	Max
A	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
c	0.49		0.70	0.019		0.027
D	15.25		15.75	0.6		0.62
D1		1.27			0.050	
E	10		10.40	0.393		0.409
e	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.256
H1	6.20		6.60	0.244		0.107
J1	2.40		2.72	0.094		0.154
L1	13		14	0.511		
L20	3.50		3.93	0.137		0.645
L30		16.40			1.137	
$\varnothing P$		28.90				0.116
Q	3.75		3.85	0.147		

POA OO15988_P

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2			30.6	1.126		0.204
L3	28.6		10.6	.0385		0.417
L4	9.8		3.6	0.114		0.141
L5	2.9		16.4	0.626		0.645
L6	15.9		9.3	0.354		0.366
L7	9		3.2	0.118		0.126
\varnothing	3					

TO-220FP(040Y) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.009		0.106
C	1		1.4	0.039		0.055
D	2.4		2.75	0.094		0.108
E	0.4		0.7	0.015		0.027
F	0.75		1	0.029		0.039
F1	1.15		1.7	0.045		0.215
G	4.68		5.48	0.184		0.111
G1	2.24		2.84	0.088		0.409
H	10		10.4	0.393		0.755
L1	18.4			16.2	0.724	
L2					0.629	0.633
L4	15.3			16.4	0.625	
L5			9.4	0.354		0.665
L6	15.9			53.6	0.885	
L7	9		5.4	0.181		0.362
L8	22.5		3.29	0.090		0.129
M	4.6				0.019	
N	2.29					
Dia	3					
R	0.5					

(

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
$11-$ Sep-2006	2	Complete version
$19-$ Dec-2007	3	The document has been reformatted

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

