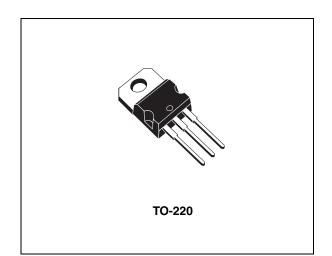


LD1084XX

5 A low drop positive voltage regulator adjustable


Features

- Typical dropout 1.3 V (at 5 A)
- Three terminal adjustable output voltage
- Guaranteed output current up to 5 A
- Output tolerance ± 1 % at 25 °C and ± 2 % in full temperature range
- Internal power and thermal limit
- Wide operating temperature range -40 °C to 125 °C
- Package available: TO-220
- Pinout compatibility with standard adjustable VREG

Description

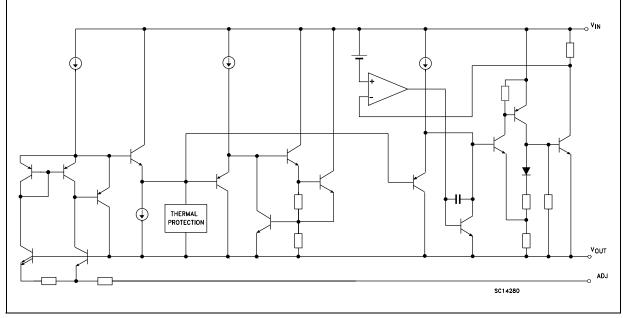
The LD1084XX is a low drop voltage regulator able to provide up to 5 A of output current. Dropout is guaranteed at a maximum of 1.5 V at the maximum output current, decreasing at lower loads. The LD1084XX is pin to pin compatible with the older 3-terminal adjustable regulators, but has better performances in term of drop and output tolerance.

A 2.85 V output version is suitable for SCSI-2 active termination. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1084XX quiescent current flows into the load, so increase efficiency. Only a 10 μ F minimum capacitor is need for stability.

The device is supplied in TO-220. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within \pm 1 % at 25 °C.

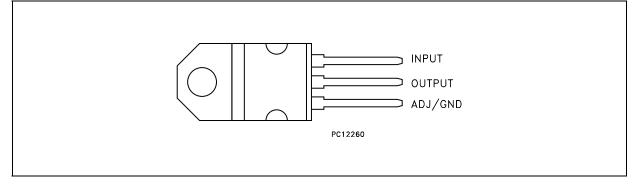
Table 1. Device summary

Order code	Output voltage
LD1084V	Adjustable


Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Schematic application
5	Electrical characteristics7
6	Typical application
7	Package mechanical data 13
8	Revision history

1 Diagram



2 Pin configuration

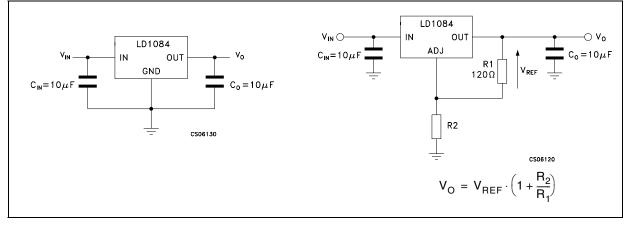
Figure 2. Pin connections (top view)

3 Maximum ratings

Table 2. Absolute maximum rating

Symbol	Parameter	Value	Unit
VI	DC input voltage	30	V
Ι _Ο	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-55 to +150	°C
T _{OP}	Operating junction temperature range	-40 to +125	°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.


Table 3. Thermal data

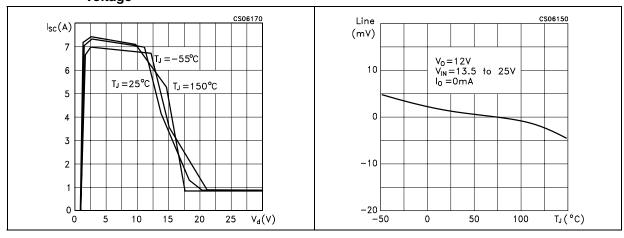
Symbol	Parameter	TO-220	Unit
R _{thJC}	Thermal resistance junction-case	3	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

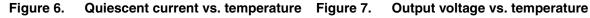
4 Schematic application

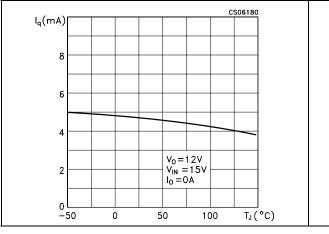
5 Electrical characteristics

 V_I = 4.25 V, C_I = C_O =10 $\mu F,~T_A$ = -40 to 125 °C, unless otherwise specified.

Symbol	Parameter Test condition		Min.	Тур.	Max.	Unit
V	Output valtage (1)	I _O = 10mA T _J = 25°C	1.237	1.25	1.263	V
Vo	Output voltage ⁽¹⁾	$I_{O} = 10$ mA to 3A, $V_{I} = 2.85$ to 30V	1.225	1.25	1.275	V
۵۷ ₀ Lii	Line regulation	$I_{O} = 10$ mA, $V_{I} = 2.85$ to 16.5V, $T_{J} = 25^{\circ}$ C		0.015	0.2	%
		$I_{O} = 10$ mA, $V_{I} = 2.85$ to 16.5V		0.035	0.2	%
۸۷		$I_{O} = 10$ mA to 5A, $T_{J} = 25^{\circ}$ C		0.1	0.3	%
ΔV_O	Load regulation	$I_{O} = 0$ to 5A		0.2	0.4	%
V _d	Dropout voltage	I _O = 5A		1.3	1.5	V
I _{O(min)}	Minimum load current	V _I = 30V		3	10	mA
	Short circuit current	$V_{I} - V_{O} = 5V$	5.5	6.5		Α
I _{sc}		$V_{\rm I} - V_{\rm O} = 25V$	0.5	0.7		А
	Thermal regulation	$T_A = 25^{\circ}C$, 30ms pulse		0.003	0.015	%/W
SVR	Supply voltage rejection	ction $ \begin{cases} f = 120 \text{ Hz}, \text{ C}_{O} = 25 \mu\text{F}, \text{C}_{ADJ} = 25 \mu\text{F}, \\ \text{I}_{O} = 5\text{A}, \text{ V}_{I} = 6.25 \pm 3\text{V} \end{cases} $		72		dB
I _{ADJ}	Adjust pin current	$V_{I} = 4.25V, I_{O} = 10 \text{ mA}$		55	120	μA
ΔI_{ADJ}	Adjust pin current change ⁽¹⁾	$I_{O} = 10$ mA to 5A, $V_{I} = 2.85$ to 16.5V		0.2	5	μA
eN	RMS output noise voltage (% of V _O)	$T_A = 25^{\circ}C$, f =10Hz to 10kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%


Table 4. Electrical characteristics of LD1084XX


1. See short-circuit current curve for available output current at fixed dropout.



Typical application 6

Unless otherwise specified T_J = 25 °C, C_I = 10 μ F (tant.), C_O = 22 μ F (tant.) Short circuit current vs. dropout Figure 4. Figure 5. Line regulation vs. temperature voltage

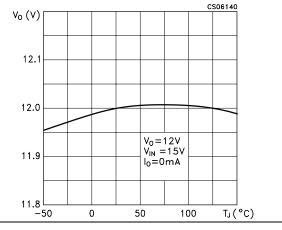
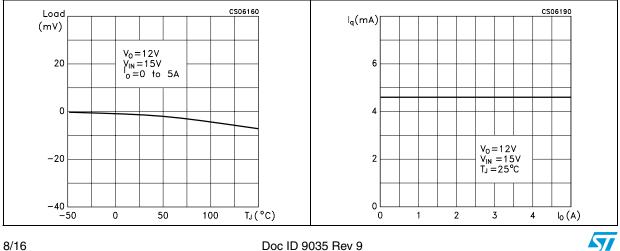
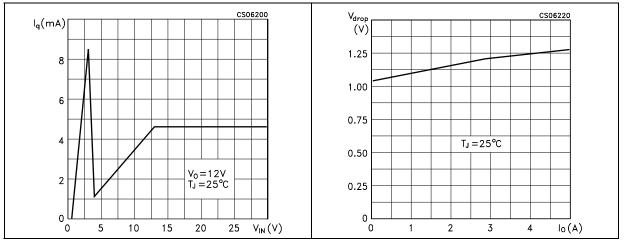




Figure 9. Quiescent current vs. output voltage

Figure 10. Quiescent current vs. input voltage Figure 11. Dropout voltage vs. output current

Figure 12. Supply voltage rejection vs. output Figure 13. Dropout voltage vs. temperature current

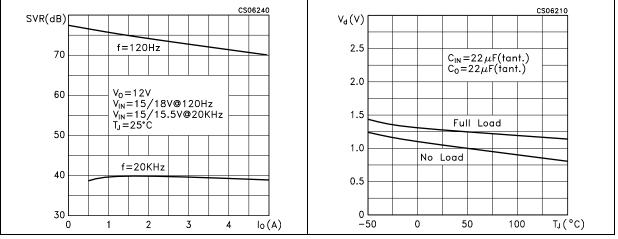
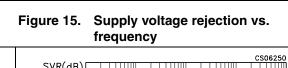
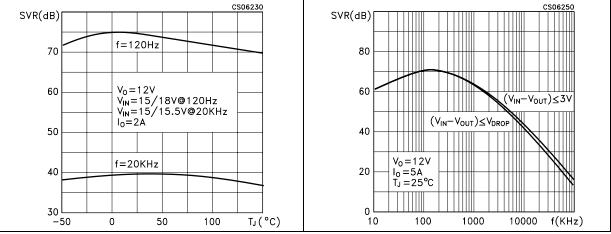
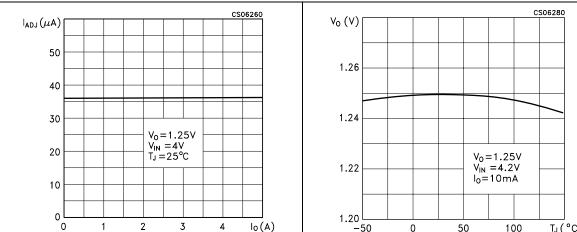
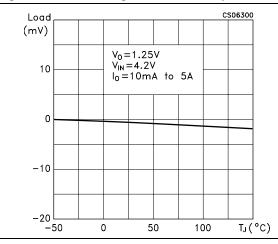
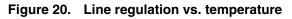
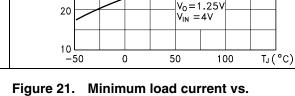





Figure 14. Supply voltage rejection vs. temperature

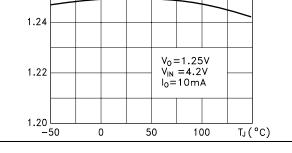
57


 $|_{ADJ}(\mu A)$


50


40

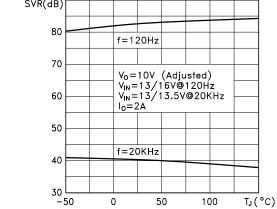
30



temperature

CS06290 CS06310 Line $I_0(mA)$ (mV) $V_0 = 1.25V$ $V_{IN} = 2.7$ to 14V 4 5 $I_0 = 10 \text{mA}$ 3 0 2 -5 V₀=1.25V $V_{IN} = 27V$ 0 -10└ -50 -50 0 50 100 T_J(°C) TJ(°C) 0 50 100

 $l_0 = 10 \text{mA}$


FULL LOAD

CS06270

LD1084XX

Figure 22. Supply voltage rejection vs. temperature

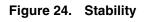


Figure 23. Supply voltage rejection vs. frequency

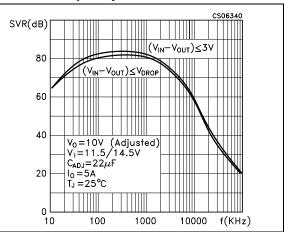


Figure 25. Supply voltage rejection vs. output current

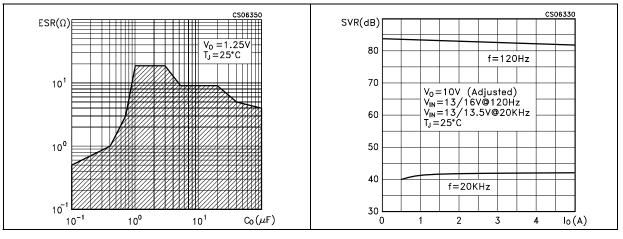
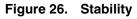
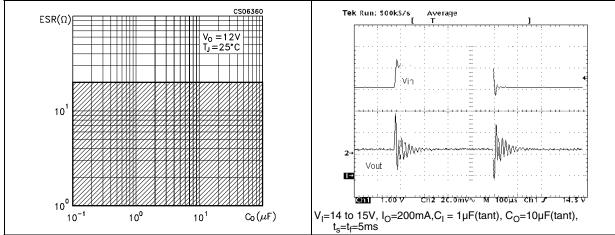
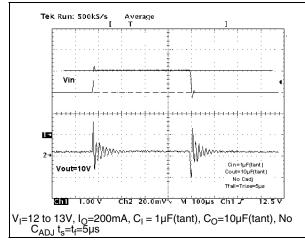
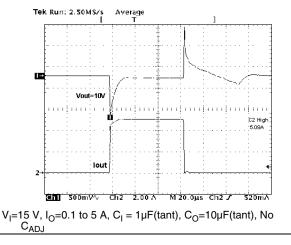




Figure 27. Line transient



57



Doc ID 9035 Rev 9

Figure 28. Line transient

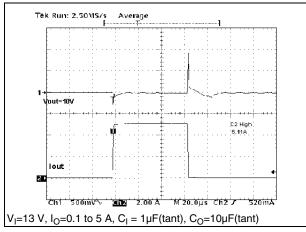
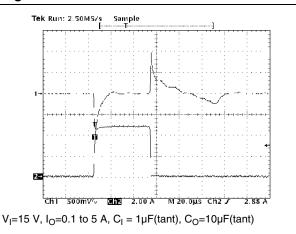
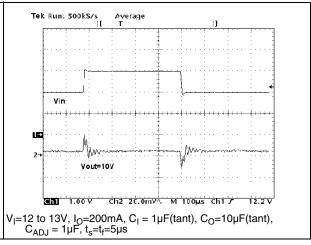
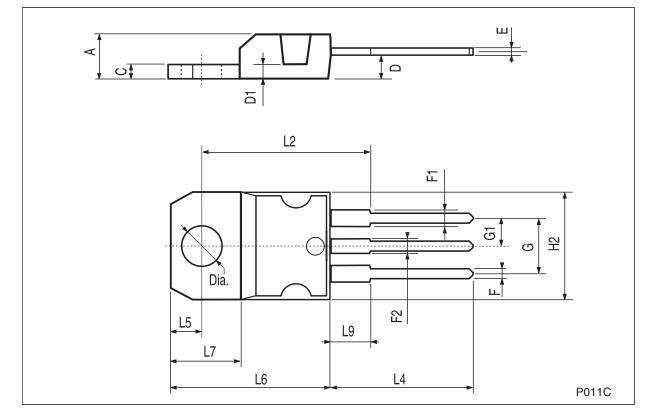




Figure 29. Load transient


7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim	mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур. М	
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220 mechanical data

Doc ID 9035 Rev 9

8 Revision history

Date	Revision	Changes	
07-Oct-2004	3	Mistake order codes - Table 1.	
08-Feb-2005	4	Mistake U.M. Load Regulation - V ==> mV.	
16-Jun-2005	5	Order codes updated.	
04-Apr-2007	6	Order code updated.	
07-Jun-2007	7	Order codes updated.	
08-Apr-2008	8	Modified: <i>Table 1 on page 1</i> . Removed: packages D ² PAK, D ² PAK/A and mechanical data.	
29-Jul-2009	9	Modified: Table 1 on page 1.	

Table 5.Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

