EC2500ETTSY-64.000M TR

 ECLIPTEK CORPORATION

ELECTRICAL SPECIFICATIONS

Nominal Frequency	64.000 MHz
Frequency Tolerance/Stability	$\pm 100 \mathrm{ppm}$ Maximum (Inclusive of all conditions: Calibration Tolerance at $25^{\circ} \mathrm{C}$, Frequency Stability over the Operating Temperature Range, Supply Voltage Change, Ouput Load Change, First Year Aging at $25^{\circ} \mathrm{C}$, Shock, and Vibration)
Aging at $25^{\circ} \mathrm{C}$	$\pm 5 \mathrm{ppm} / \mathrm{year}$ Maximum
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	$5.0 \mathrm{Vdc} \pm 10 \%$
Input Current	50mA Maximum (No Load)
Output Voltage Logic High (Voh)	2.4Vdc Minimum with TTL Load, Vdd-0.5Vdc Minimum with HCMOS Load
Input Current Logic High (loh)	-16mA
Output Voltage Logic Low (Vol)	0.4 Vdc Maximum with TTL Load, 0.5Vdc Maximum with HCMOS Load
Input Current Logic Low (Iol)	16 mA
Rise/Fall Time	5 nSec Maximum (Measured at 0.4 Vdc to 2.4 Vdc with TTL Load; Measured at 10% to 90% of waveform with HCMOS Load)
Duty Cycle	50 ± 10 (\%) (Measured at 50% of waveform with HCMOS Load or at 1.4 Vdc with TTL Load)
Load Drive Capability	High Drive (10TTL Load or 50pF HCMOS Load)
Output Logic Type	CMOS
Pin 1 Connection	Tri-State (High Impedance)
Tri-State Input Voltage (Vih and Vil)	+2.0 Vdc Minimum to enable output, +0.8 Vdc Maximum to disable output (High Impedance), No Connect to enable output.
RMS Phase Jitter	1 pSec Maximum (12kHz to 20MHz offset frequency)
Start Up Time	10 mSec Maximum
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ENVIRONMENTAL \& MECHANICAL SPECIFICATIONS

Fine Leak Test	MIL-STD-883, Method 1014, Condition A
Gross Leak Test	MIL-STD-883, Method 1014, Condition C
Mechanical Shock	MIL-STD-202, Method 213, Condition C
Resistance to Soldering Heat	MIL-STD-202, Method 210
Resistance to Solvents	MIL-STD-202, Method 215
Solderability	MIL-STD-883, Method 2003
Temperature Cycling	MIL-STD-883, Method 1010
Vibration	MIL-STD-883, Method 2007, Condition A

EC2500ETTSY-64.000M TR

MECHANICAL DIMENSIONS (all dimensions in millimeters)

PIN	CONNECTION
1	Tri-State
2	Ground
3	Output
4	Supply Voltage

| LINE | |
| :--- | :--- | MARKING

Suggested Solder Pad Layout

All Dimensions in Millimeters

All Tolerances are ± 0.1

EC2500ETTSY-64.000M TR

OUTPUT WAVEFORM \& TIMING DIAGRAM

Test Circuit for TTL Output

Output Load Drive Capability	\mathbf{R}_{L} Value $(\mathbf{O h m s})$	\mathbf{C}_{L} Value $(\mathbf{p F})$
$10 T \mathrm{TL}$	390	15
5TTL	780	15
2TTL	1100	6
10LSTTL	2000	15
1TTL	2200	3

Table 1: R_{L} Resistance Value and C_{L} Capacitance Value Vs. Output Load Drive Capability

Note 1: An external $0.1 \mu \mathrm{~F}$ low frequency tantalum bypass capacitor in parallel with a $0.01 \mu \mathrm{~F}$ high frequency ceramic bypass capacitor close to the package ground and $V_{D D}$ pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance ($>10 \mathrm{Mohms}$), and high bandwidth ($>300 \mathrm{MHz}$) passive probe is recommended.
Note 3: Capacitance value C_{L} includes sum of all probe and fixture capacitance.
Note 4: Resistance value R_{L} is shown in Table 1. See applicable specification sheet for 'Load Drive Capability'.
Note 5: All diodes are MMBD7000, MMBD914, or equivalent.

Test Circuit for CMOS Output

Note 1: An external $0.1 \mu \mathrm{~F}$ low frequency tantalum bypass capacitor in parallel with a $0.01 \mu \mathrm{~F}$ high frequency ceramic bypass capacitor close to the package ground and V_{DD} pin is required.
Note 2: A low capacitance ($<12 \mathrm{pF}$), 10X attenuation factor, high impedance ($>10 \mathrm{Mohms}$), and high bandwidth ($>300 \mathrm{MHz}$) passive probe is recommended.
Note 3: Capacitance value C_{L} includes sum of all probe and fixture capacitance.

EC2500ETTSY-64.000M TR

Tape \& Reel Dimensions

Quantity Per Reel: 1,000 units

*Compliant to EIA 481A

EC2500ETTSY-64.000M TR

Recommended Solder Reflow Methods

High Temperature Infrared/Convection

$\mathrm{T}_{\text {S }}$ MAX to T_{L} (Ramp-up Rate)	$3^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{\text {S }} \mathrm{MIN}$)	$150^{\circ} \mathrm{C}$
- Temperature Typical (TS TYP)	$175^{\circ} \mathrm{C}$
- Temperature Maximum (TS MAX)	$200^{\circ} \mathrm{C}$
- Time ($\mathrm{ts}_{\text {s MIN} \text {) }}$	60-180 Seconds
Ramp-up Rate (T_{L} to T_{P})	$3^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$217{ }^{\circ} \mathrm{C}$
- Time (t)	60-150 Seconds
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$ Maximum for 10 Seconds Maximum
Target Peak Temperature (T_{P} Target)	$250^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	20-40 seconds
Ramp-down Rate	$6^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	8 minutes Maximum
Moisture Sensitivity Level	Level 1
Additional Notes	Temperatures shown are applied to body of device.

EC2500ETTSY-64.000M TR

Recommended Solder Reflow Methods

Low Temperature Infrared/Convection $240^{\circ} \mathrm{C}$

T_{S} MAX to T_{L} (Ramp-up Rate)	$5^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{\mathbf{S}} \mathrm{MIN}$)	N/A
- Temperature Typical (T_{s} TYP)	$150^{\circ} \mathrm{C}$
- Temperature Maximum ($\mathrm{T}_{\mathrm{s}} \mathrm{MAX}$)	N/A
- Time ($\mathrm{t}_{\mathrm{s}} \mathrm{MIN}$)	60-120 Seconds
Ramp-up Rate (L_{L} to T_{P})	$5^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$150^{\circ} \mathrm{C}$
- Time (t_{L})	200 Seconds Maximum
Peak Temperature (T_{P})	$240^{\circ} \mathrm{C}$ Maximum
Target Peak Temperature (T_{p} Target)	$240^{\circ} \mathrm{C}$ Maximum 1 Time / $230^{\circ} \mathrm{C}$ Maximum 2 Times
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
Ramp-down Rate	$5^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	N/A
Moisture Sensitivity Level	Level 1
Additional Notes	Temperatures shown are applied to body of device.

Low Temperature Manual Soldering

$185^{\circ} \mathrm{C}$ Maximum for 10 seconds Maximum, 2 times Maximum. (Temperatures shown are applied to body of device.)

High Temperature Manual Soldering

$260^{\circ} \mathrm{C}$ Maximum for 5 seconds Maximum, 2 times Maximum. (Temperatures shown are applied to body of device.)

