LTR	DESCRIPTION	DATE	APPROVED

REV																						
PAGE																						
REV																						
PAGE																						
REV STATUS OF PAGES			REV																			
			PAGE		1	2	3	4	5	6	7	8		9		11	12					
PMIC N/A				PREPARED BY DLA LAND AND MARITIME Phu H. Nguyen COLUMBUS, OHIO 43218-3990																		
Original date of drawing YY MM DD 11-01-19				APPROVED BY Thomas M. Hess							TITLE MICROCIRCUIT, DIGITAL, CMOS, $\pm \% \mathrm{~V} /+5 \mathrm{~V}$, 4Ω, SINGLE SPDT SWITCH, MONOLITHIC SILICON											
				$\begin{gathered} \text { SIZE } \\ \text { A } \end{gathered}$			NT. 16				DWG NO.V62/11608											
				REV							PAGE 1 OF 12											

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance CMOS, $\pm 5 \mathrm{~V} /+5 \mathrm{~V}, 4 \Omega$, single SPDT switch microcircuit, with an operating temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer,s PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type
01

Generic
ADG619-EP

Circuit function
CMOS, $\pm 5 \mathrm{~V} /+5 \mathrm{~V}, 4 \Omega$, single SPDT switch
1.2.2 Case outline(s). The case outlines are as specified herein.
Outline letter
Number of pins
JEDEC PUB 95
JEDEC MO-178

Package style

Small outline Package
1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

$\begin{array}{ll}\text { A } & \text { Hot solder dip } \\ \text { B } & \text { Tin-lead plate } \\ \text { C } & \text { Gold plate } \\ \text { D } & \text { Palladium } \\ \text { E } & \text { Gold flash palladium } \\ \text { Z } & \text { Other }\end{array}$

DLA LAND AND MARITIME COLUMBUS, OHIO

SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/11608
	REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Voltage referenced :	
$V_{D D}$ to $V_{S S} \ldots . .$.	13.0 V
$V_{D D}$ to GND	-0.3 V to +6.5 V
$V_{\text {SS }}$ to GND	+0.3 V to -6.5 V
Analog input $2 /$	$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital input $2 /$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (which ever occurs first)
Peak current, S or D	100 MA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle mzximum)
Continuous current, S or D	50 mA
Ambient operating temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum junction temperature (T_{J})	$150^{\circ} \mathrm{C}$
Thermal impedance:	
$\theta_{\text {JA }}$	$229^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	$91.99^{\circ} \mathrm{C} / \mathrm{W}$
Lead soldering:	
Reflow, peak temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at peak temperature	20 sec to 40 sec

2. APPLICABLE DOCUMENTS

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Applications for copies should be addressed to the Electronic Industries Alliance, 3103 North $10^{\text {th }}$ St., Suite 240-S, Arlington, VA 22201-2107 or online at http://www.jedec.org)

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

[^0]| DLA LAND AND MARITIME
 COLUMBUS, OHIO | SIZE
 A | CODE IDENT NO.
 16236 | DWG NO.
 V62/11608 |
| :---: | :---: | :--- | :--- |
| | | REV | PAGE 3 |

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Functional block diagram. The functional block diagram shall be as shown in figure 3 .
3.5.4 Truth table. The truth table shall be as shown in figure 4.
3.5.5 On Resistance. The On resistance shall be as shown in figure 5.
3.5.6 Off Leakage. The Off leakage shall be as shown in figure 6.
3.5.7 On Leakage. The On leakage shall be as shown in figure 7.
3.5.8 Switching times. The switching times shall be as shown in figure 8.
3.5.9 Break before making time delay. The break before making time delay shall be as shown in figure 9 .
3.5.10 Charge injection. The charge injection shall be as shown in figure 10.
3.5.11 Off isolation. The Off isolation shall be as shown in figure 11.
3.5.12 Channel to channel crosstalk. The channel to channel crosstalk shall be as shown in figure 12.
3.5.13 Bandwidth. The bandwidth shall be as shown in figure 13.

| DLA LAND AND MARITIME |
| :---: | :---: | :---: | :---: |
| COLUMBUS, OHIO | | SIZE |
| :---: |
| A | | CODE IDENT NO. |
| :---: |
| 16236 | | DWG NO. |
| :---: |
| V62/11608 |

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions$\underline{2} /$unless otherwise specified	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	

DUAL SUPPLY
Analog switch

Analog signal range		$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$		$\mathrm{V}_{\text {SS }}$	$V_{D D}$	V
On resistance	RoN	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$ See figure 5	6.5		10	Ω
$\mathrm{R}_{\text {ON }}$ Match between channels	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$	1.1		1.45	
On resistance flatness	$\mathrm{R}_{\text {FLAT (ON)) }}$	$\mathrm{V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$	1.35		1.6	
Leakage currents ($\left.\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}\right)$						
Source off leakage,	$\mathrm{I}_{\mathrm{s}}(\mathrm{Off})$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V},$ See figure 6	± 0.25		± 3	nA
Channel On leakage,	I_{D}, I_{S} (On)	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V},$ See figure 7	± 0.25		± 25	

Digital inputs

Input high voltage	$\mathrm{V}_{\mathrm{INH}}$				2.4	
Input low voltage	$\mathrm{V}_{\mathrm{INL}}$		V			
Input current,	I_{NL} or I_{NH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INL}}$ or $\mathrm{V}_{\mathrm{INH}}$			0.8	
Digital input capacitance	C_{IN}		0.05 TYP		± 0.1	$\mu \mathrm{~A}$

Dynamic characteristic 3/						
ton		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \text { See figure } 8 \end{aligned}$	220		390	ns
$\mathrm{t}_{\text {OFF }}$			75		135	
Break before make time delay	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 p F, \\ & V_{S 1}=V_{S 2}=3.3 \mathrm{~V}, \text { See figure } 9 \end{aligned}$	70 TYP	10		
Charge injection		$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$, See figure 10	6 TYP			pC
Off isolation		$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See figure 11	-67 TYP			dB
Channel to channel crosstalk		$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See figure 12	-67 TYP			
Bandwidth -3 dB		$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, See figure 13	190 TYP			MHz
C_{S} (Off)		$\mathrm{f}=1 \mathrm{MHz}$	25 TYP			pF
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}$ (On)			95 TYP			

Power requirements ($\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V}$)

$I_{D D}$	Digital inputs $=0 \mathrm{~V}$ or 5.5 V	0.001 TYP		1.0	$\mu \mathrm{~A}$	
			0.001 TYP		1.0	$\mu \mathrm{~A}$

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11608
		REV	PAGE 5

TABLE I. Electrical performance characteristics Continued. 1/

Test	Symbol	Test conditions 2/ unless otherwise specified	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	

SINGLE SUPPLY
Analog switch

Analog signal range		$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-0 \mathrm{~V}$		0	$V_{D D}$	V
On resistance	Ron	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$ See figure 5	10		14	Ω
$\mathrm{R}_{\text {ON }}$ Match between channels	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$	1.1		1.4	
On resistance flatness	$\mathrm{R}_{\text {FLAT (ON) }}$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$ to 3.3 V , $\mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$	0.5 TYP		1.4	
Leakage currents ($\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$)						
Source off leakage,	Is (Off)	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V},$ See figure 6	± 0.25		± 3	nA
Channel On leakage,	I_{D}, I_{S} (On)	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$ See figure 7	± 0.25		± 25	
Digital inputs						
Input high voltage	V INH			2.4		V
Input low voltage	$\mathrm{V}_{\text {INL }}$				0.8	
Input current,	I_{NL} or I_{NH}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	0.05 TYP		± 0.1	$\mu \mathrm{A}$
Digital input capacitance	$\mathrm{Cl}_{\text {IN }}$		2 TYP			pF
Dynamic characteristic 3/						
ton		$\begin{aligned} & R_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} \text {, See figure } 8 \end{aligned}$	120		215	ns
toff			75		105	
Break before make time delay	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3.3 \mathrm{~V} \text {, See figure } 9 \end{aligned}$	40 TYP	10		
Charge injection		$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$, See figure 10	110 TYP			pC
Off isolation		$\mathrm{R}_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See figure 11	-67 TYP			dB
Channel to channel crosstalk		$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See figure 12	-67 TYP			
Bandwidth -3 dB		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, See figure 13	190 TYP			MHz
C_{S} (Off)		$\mathrm{f}=1 \mathrm{MHz}$	25 TYP			pF
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\text {S }}$ (On)			95 TYP			
Power requirements ($\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$)						
I_{DD}		Digital inputs $=0 \mathrm{~V}$ or 5.5 V	0.001 TYP		1.0	$\mu \mathrm{A}$

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.
3/ Guaranteed by design, not subject to production test.

SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11608
	REV	PAGE 6

Case X

Dimensions						
Symbol	Millimeters		Symbol	Millimeters		
	Min	Max		Min	Max	
A	0.90	1.30	E	1.50	1.70	
A1	0.05	0.15	E1	2.60	3.00	
A2	0.95	1.45	e	0.65 BSC		
b	0.22	0.38	L	0.30	0.60	
C	0.08	0.22	L1	0.60 BSC		
D	2.80	3.00				

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11608
		REV	PAGE

Case outline X

Pin No.	Mnemonic	Description
1	D	Drain terminal. Can be an input or output
2	S1	Source terminal. Can be an input or output
3	GND	Ground (0 V) reference.
4	$\mathrm{~V}_{\mathrm{DD}}$	Most positive power supply
5	NC	No connect. Not internal connected.
6	IN	Logic control input
7	VSS	Most negative power supply. This pin is only used in dual supply applications and should be tied to ground in single supply applications.
8	S2	Source terminal. can be an input or output

FIGURE 2. Terminal connections.

FIGURE 3. Functional block diagram.

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

FIGURE 4. Truth table.

| DLA LAND AND MARITIME |
| :---: | :---: | :---: | :---: |
| COLUMBUS, OHIO |\quad| SIZE |
| :---: |
| A |\quad| CODE IDENT NO. |
| :---: |
| 16236 | | DWG NO. |
| :---: |
| V62/11608 |

FIGURE 5. ON Resistance.

FIGURE 7. ON Leakage.

FIGURE 8. Switching times.

FIGURE 9. Break before make time delay.

| DLA LAND AND MARITIME |
| :---: | :---: | :---: | :---: |
| COLUMBUS, OHIO |\quad| SIZE |
| :---: |
| A |\quad| CODE IDENT NO. |
| :---: |
| 16236 | | DWG NO. |
| :---: |
| V62/11608 |

FIGURE 10. Charge injection.

FIGURE 11. Off isolation.

| DLA LAND AND MARITIME |
| :---: | :---: | :---: | :---: |
| COLUMBUS, OHIO |\quad| SIZE |
| :---: |
| A |\quad| CODE IDENT NO. |
| :---: |
| 16236 | | DWG NO. |
| :---: |
| V62/11608 |

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
FIGURE 12. Channel to channel crosstalk.

FIGURE 13. Bandwidth.

| DLA LAND AND MARITIME |
| :---: | :---: | :---: | :---: |
| COLUMBUS, OHIO |\quad| SIZE |
| :---: |
| A |\quad| CODE IDENT NO. |
| :---: |
| 16236 | | DWG NO. |
| :---: |
| V62/11608 |

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/11608-01XE	24355	ADG619SRJZ-EP-RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code
24355

Source of supply
Analog Devices
Rt 1 Industrial Park
PO Box 9106
Norwood, MA 02062
Point of contact: 7910 Triad Center Drive
Greensboro, NC 27409-9605

[^0]: 1/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
 2/ Overvoltage at IN, S or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

