

MIL-STD-202F

The professional ceramic disc capacitors were specially developed for applications in severe environmental conditions, high humidity, temperature, gas, vapor and solvents.

The capacitors are flame retardant epoxy coated, meeting UL 94-V0 flammability specifications. The capacitors are 100% screened on following electrical parameters:

Capacitance, loss factor, test voltage. After the 100% test, the capacitors are audited on its electrical and mechanical parameters with following AQL:

Electrical parameters: 0.065% level II

Mechanical parameters: 0.65% level II

The capacitors withstand the following reliability essays:

Terminal strength: method 211 - condition A

Resistance to solvents: method 215

Resistance to soldering heat: method 210 – condition B Solderability: method 208

Thermal shock: method 107 - condition A

Humidity (steady state): method 103 - condition D

Life (at elevated ambient temperature): method 108 – condition D

Operating temperature and storage: -55... +125° C

millimeters (inches)

Lead Spacing	Digit 8		
F		$\mathbf{\hat{x}}$	
2.5 (0.100)	D		
5 (0.200)	A	0	
6 (0.250)	E	Х	
7.5 (0.300)	В	R	
10 (0.400)	С	W	

DIMENSIONS

millimeters (inches)

Digit 9 (ø)	D ± 2 (0.079)	T max.	Available Lead Spacing
A NP0 1pF 2.7 pF	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
A 5.6pF 8.2 pF	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
A Others	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
В	5.0 (0.197)	3.0 (0.118)	A,B,D,E,O,R,X
С	6.0 (0.236)	3.0 (0.118)	A,B,C,D,E,O,R,X
D	7.0 (0.276)	3.0 (0.118)	A,B,C,D,E,O,R,X
E	8.0 (0.315)	3.0 (0.118)	A,B,C,D,E,O,R,X
F	9.0 (0.354)	3.0 (0.118)	A,B,C,E,O,R,X
G	10.0 (0.394)	3.0 (0.118)	A,B,C,E,O,R,X
Н	11.0 (0.433)	3.0 (0.118)	A,B,C,E,O,R,W
J	13.0 (0.512)	3.5 (0.138)	B,C,R,W
K	15.0 (0.591)	3.5 (0.138)	B,C,R,W
М	19.0 (0.748)	4.0 (0.157)	B.C

(E), (X), (W): upon request

General Specifications - Class III Professional

DIELECTRIC - CLASS III

A thin dielectric layer is grown on a disc of conductive ceramic. Very large capacitances can be obtained due to reduced thickness of this barrier layer and its inherently high dielectric constant. Due its small dimensions, they are a less expensive replacement of multilayer ceramic or polyester capacitors.

DIMEN	ISIONS	n	nillimeters (inches)
Digit 9 of P.N. (ø)	D ± 2 (0.079)	T max.	Available Lead Spacing
А	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
В	5.0 (0.197)	3.0 (0.118)	A,B,D,E,O,R,X
С	6.0 (0.236)	3.0 (0.118)	A,B,C,D,E,O,R,X
D	7.0 (0.276)	3.0 (0.118)	A,B,C,D,E,O,R,X
E	8.0 (0.315)	3.0 (0.118)	A,B,C,D,E,O,R,X
F	9.0 (0.354)	3.0 (0.118)	A,B,C,E,O,R,X
G	10.0 (0.394)	3.0 (0.118)	A,B,C,E,O,R,X
Н	11.0 (0.433)	3.0 (0.118)	A,B,C,E,O,R,W
J	13.0 (0.512)	3.5 (0.138)	B,C,R,W
К	15.0 (0.591)	4.0 (0.157)	B,C,R,W

Preferred lead spacing F = 5 (0.197)

 $Ø = 0.6 \pm 0.1$

(0.024) (0.004)

millimeters (inches)

	• •
Digit 8 of P.N.	
\mathbf{P}	
D	—
A	0
E	Х
В	R
С	W
	Digit 8 d D D A E B C

(E), (X), (W): upon request

PERFORMANCE CHARACTERISTICS CLASS III

Measured at	1.0 kHz / 0.1 Vrms / 25°C			
Dissipation Factor	$C_R \le 22 \text{ nF} \rightarrow Y5V, Y5U \le 7.5\%$ $C_R > 22 \text{ nF} \rightarrow Y5V, Y5P \le 5.0\%$			
Capacitance Tolerance	$\begin{array}{l} Y5P \to \pm 20\% \ / \ -20 \ +50\% \\ Y5U \to \pm 20\% \ / \ -20 \ +80\% \\ Y5V \to \pm 20\% \ / \ -20 \ +80\% \end{array}$			
Climatic Category	55 / 085 / 56			
Insulation	Y5P ≥12 MΩ			
Resistance @V _R	Y5U	4.7 nF100 nF → ≥ 10 M _Ω 200 nF → ≥ 1 M _Ω		
	Y5V	≥ 100 MΩ		
Dielectric Strength NOTE: Charging	Between leads	$Vt = 1.25 V_R$		
current limited to 50 mA	Body $V_R = 25V$ $Vt = 100V$ (DC)insulation $V_R = 50V$ $Vt = 150V$ (DC)			
Operating Temperature Range (°C)		-55 +125 Epoxy Coated		

Note: Damp Heat Steady State: 90... 95% R.H. 40°C / 21 days. No voltage to be applied.

EPOXY COATED – CAPACITANCE VS. DISC DIAMETER

millimeters (inches)

Class III	Δ C/C (max.) ±12%	Range -30 +85°C	Δ C/C (max.) +30 -65%	Range -30 +85°C	∆ C/C (max.) +22 -85%	Range -30 +85°C
Temp. Coefficient	Y	5P	Y	Y5U		1
Digits 1,2,3 of P.N.	6WF	6WH	6YF	6YH	6ZH	1
Rated Voltage (V _R)	25	50	25	50	50	
C _R (pF)						
4,700	4.0 (0.157)	4.0 (0.157)	4.0 (0.157)	4.0 (0.157)		
10,000	6.0 (0.236)	6.0 (0.236)	4.0 (0.137)	4.0 (0.157)		
22,000	7.0 (0.276)	8.0 (0.315)	5.0 (0.197)	6.0 (0.236)	4.0 (0.1	57)
33,000	8.0 (0.315)	9.0 (0.354)	6.0 (0.236)	7.0 (0.276)		
47,000	10.0 (0.20.4)	11.0 (0.433)				
50,000	10.0 (0.394)	_	7.0 (0.276)	8.0 (0.315)	E 0 (0 1	07)
68,000	11.0 (0.433)	13.0 (0.512)			5.0 (0.1	71)
100,000	13.0 (0.512)	15.0 (0.591)			7.0 (0.2	76)
200,000	_	—	13.0 (0.512)	—		

Y5U, Y5V - Preferences

Diameter (ϕ) = 9th Part Number Digit

Ordering Code

HOW TO ORDER

5	0	Q	2	22
General Purpose 5A = NP0 / I *5B = P100 / I *5C = N150 / I *5C = N330 / I *5F = N470 / I 5G = N750 / I 5H = N1500 / I *5I = N2200 / I *5J = N4700 / I 5K = SL 5M = Y5E / II 5N = Y5E / II 5N = Y5F / II 5O = Y5P / II *5Q = Y5V / II 5U = Z5V / II 5V = Z4V / III 5Y = Y5V / III 5Y = Y5V / III 5Y = Y5V / III 5Y = Y5V / III	Professional Switch Mode Safety 6A = NPO / I *6B = P100 / I *6C = N150 / I *6C = N330 / I *6F = N470 / I 6G = N750 / I *6F = N470 / I 6G = N750 / I *6H = N1500 / I *6I = N2200 / I 6J = N4700 / I 6J = N4700 / I 6J = SAFETY 62 = SAFETY 65 = SAFETY 67 = Y5U / SM 68 = Y5V / SM 64 = Y5P / SM 6M = X5E / II 60 = X5F / II 60 = X5V / II 60 = Z5V / II 60 = Z5V / II 60 = Z5V / II 60 = Z5V / III 60 = Z4V / III 60 = Z5V / III 60 = Z5V / III 60 = Z5V / III 20 = Z5V / III	Rated Voltage (dc) D = 16V F = 25V H = 50V K = 100V N = SAFETY Q = 500V R = 1000V S = 2000V T = 3000V U = 4000V V = SAFETY W = 5000V *X = 6000V *Y = 7500V	$\begin{array}{c} \mbox{Capacitance} = \mbox{TPC code} \\ 1 \ pF = 1 \ R0 \\ 1.2 \ pF = 1 \ R2 \\ 1.5 \ pF = 1 \ R5 \\ 1.8 \ pF = 1 \ R5 \\ 2.2 \ pF = 2 \ R2 \\ 2.7 \ pF = 2 \ R7 \\ 3.9 \ pF = 3 \ R9 \\ 4.7 \ pF = 4 \ R7 \\ 5.6 \ pF = 5 \ R6 \\ 6.8 \ pF = 6 \ R8 \\ 8.2 \ pF = 8 \ R2 \\ 10 \ pF = 100 \\ 12 \ pF = 120 \\ 15 \ pF = 150 \\ 18 \ pF = 180 \\ 22 \ pF = 220 \\ 27 \ pF = 390 \\ 47 \ pF = 470 \\ 56 \ pF = 560 \\ 68 \ pF = 680 \\ 82 \ pF = 820 \\ \end{array}$	Capacitance = TPC code 100pF = 101 120pF = 121 150pF = 151 180pF = 181 220pF = 221 270pF = 271 330pF = 331 390pF = 391 470pF = 471 560pF = 561 680pF = 681 820pF = 821 1nF = 102 1.2nF = 122 1.8nF = 182 2.2nF = 222 2.7nF = 272 3.3nF = 332 3.9nF = 392 4.7nF = 472 5.6nF = 562 6.8nF = 682 8.2nF = 822 10nF = 103 15nF = 153 22nF = 223
*Upon Request				47nF = 473 100nF = 104 200nF = 204

Α

Ordering Code

M				
Tolerance $C = \pm 0.25 \text{ pF}$ $D = \pm 0.50 \text{ pF}$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ S = -20+50% Z = -20+80% P = 0+100%				

Ε T
Capacitor Diameter
$A = 4 (0.157)$ $B = 5 (0.197)$ $C = 6 (0.236)$ $D = 7 (0.276)$ $E = 8 (0.315)$ $F = 9 (0.354)$ $G = 10 (0.394)$ $H = 11 (0.433)$ $J = 13 (0.512)$ $K = 15 (0.591)$ $M^* = 19 (0.748)$
Wire 0.8 (0.031) recommended

Lead Forming		\bigcap	\bigcap	\cap
mm	inches	ÎΠ	R	
2.5 ±0.5	.1 ± .025	D	-	-
5 ^{+0.6} -0.2	.2 ± .025	А	0	N
6 ^{+0.6} -0.2	.25 ± .025	E	Х	-
7.5 ⁺¹ -0.5	.3 ± .05	В	R	Q
10 ^{+0.5} -1.0	.4 ± .05	С	W	-
12.5 +1 -0.5	.5 ± .05	Ρ	-	-

Finishing

Α

Diam ≤9 (0.354) and F = 5.00 (0.197)

1.5 (0.059) max.

For every other:

Coating does not surpass the bend Low Voltage

A = Phenolic $\begin{pmatrix} General \\ Purpose \end{pmatrix}$ Q = Waxed phenolic

S = Epoxy (Professional) cap. diameter

≤ 8 (0.315) D = Epoxy (Professional) cap. diameter > 8 (0.315)

High Voltage

Please note that not all code combinations are either possible or available.

Marking

DIC	G. 2		diam >6mm	Capacitance	EIA
0				1pF = 109	100pF = 101
TO //		-		1.2pF = 129	120pF = 121
				1.5pF = 159	150pF = 151
General Purpose	Professional			1.8pF = 189	180pF = 181
A = NPO / I	A = NPO / I			2.2pF = 229	220pF = 221
*B = P100 / I	B = P100 / I			2.7pF = 279	270pF = 271
*C = N150 / I	C = N150 / I			3.9pF = 399	390pF = 391
*D = N220 / I	D = N220 / I			4.7pF = 479	470pF = 471
*E = N330 / I	E = N330 / I	×		5.6pF = 569	560pF = 561
*F = N470 / I	F = N470 / I			6.8pF = 689	680pF = 681
G = N750 / I	G = N750 / I			8.2pF = 829	820pF = 821
H = N1500 / I	H = N1500 / I		$\overline{}$	10pF = 100	1nF = 102
*I = N2200 / I	I = N2200 / I	χ 22	22	12pF = 120	1.2nF = 122
*J = N4700 / I	J = N4700 / I		<u>м</u>)	15pF = 150	1.8nF = 182
K = SL	7 = Y5U / SM			18pF = 180	2.2nF = 222
M = Y5E / II	8 = Y5V / SM			22pF = 220	2.7nF = 272
N = Y5F / II	L = Y5P / SM		\land	27pF = 270	3.9nF = 392
0 = Y5P / II	M = X5E / II			39pF = 390	4.7nF = 472
P = Y5R / II	N = X5F / II			47pF = 470	5.6nF = 562
Q = Y5T / II	0 = X5P / II		7	56pF = 560	6.8nF = 682
S = Y5U / II	P = X5R / II	P		68pF = 680	8.2nF = 822
T = Y5V / II	Q = X5T / II	DIG. 3	DIG. 7	82pF = 820	10nF = 103
U = Z5V / II	S = X5U / II	Q	M		15nF = 153
V = Z4V / III	T = X5V / II				22nF = 223
*W = Y5P / II	U = Z5V / II	Rated Voltage	Tolerance		33nF = 333
*X = Y5R / II	V = Z4V / III	D = 16V	$C = \pm 0.25 pF$		47nF = 473
Y = Y5U / II	W = Y5P / III	F = 25V	$D = \pm 0.5 pF$		100nF = 104
Z = Y5V / II	X = Y5R / III	H = 50V	$J=\pm5\%$		200nF = 204
	Y = Y5U / III	K = 100V	$K = \pm 10\%$		
	Z = Y5V / III	Q = 500V	$M = \pm 20\%$		
		R = 1000V	S = -20 + 50%		
		S = 2000V	Z = -20 +80%		
*Upon Request		T = 3000V	P = 0 + 100%		
opon nequest		U = 4000V			
		W = 5000V	Safety		
		X = 6000V	Front		Туре
		Y = 7500V		\frown	≁ 61V

TC – Temperature coefficient.

DIG – for better understanding, check pages 3 and 4.

IDENTIFICATION AND TRACEABILITY

On all TPC ceramic capacitors packages, you will find a bar code label with the following information:

TAPED PARTS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Diameter	Quantities	
(Vr)	D	Ammopack	Reel
Vr <= 500V	D ≦ 7 (0.276)	2000	2500
	7 < D ≦ 11 (0.433)	2000	2000
500V <vr<=2kv< td=""><td>D ≦ 11 (0.433)</td><td>1500</td><td>2000</td></vr<=2kv<>	D ≦ 11 (0.433)	1500	2000
2KV <vr=5kv< td=""><td>D ≦ 11 (0.433)</td><td>1000</td><td>1500</td></vr=5kv<>	D ≦ 11 (0.433)	1000	1500

CARDBOARD STRIPS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Diameter	Lead Space	
(Vr)	D	< = 5 (0.197)	> 5 (0.197)
Vr <= 500V	D ≤ 8 (0.315)	2500	1500
	8 (0.315) ≦ D≦ 11 (0.433)	1500	-
	8 (0.315) ≦ D≦ 13 (0.512)	-	1000
	11 (0.433) ≦ D≦ 15 (0.591)	1000	-
	13 (0.512) ≦ D≦ 19 (0.748)	-	500
	D ≦ 19 (0.748)	500	-
500V <vr<=2kv< td=""><td>D ≦ 9 (0.354)</td><td>1500</td><td>1000</td></vr<=2kv<>	D ≦ 9 (0.354)	1500	1000
	$9 (0.354) \le D \le 11 (0.433)$	-	1000
	9 (0.354) ≦ D ≦ 13 (0.512)	1000	-
	11 (0.433) ≦ D ≦ 19 (0.748)	-	500
	$13 (0.512) \le D \le 19 (0.748)$	500	-
2KV <vr<=5kv< td=""><td>D ≦ 9 (0.354)</td><td>1500</td><td>-</td></vr<=5kv<>	D ≦ 9 (0.354)	1500	-
Safety 65N 62O	D ≦ 11 (0.433)	-	1000
	D ≦ 13 (0.512)	500	500
Safety	D ≦ 6 (0.236)	1500	1500
61V	7 (0.275) \leq D \leq 9 (0.354)	1000	1000
	9 (0.354) ≦ D	500	500

Quantities for other package alternative, upon request.

Tape and Reel Specifications

There are two types of taped disc ceramic capacitors: Straight or crimped leads.

Both types can be shipped on reels or ammopack. The standard packaging quantities are shown bellow:

Maximum pull force during insertion and lead cut

	F ₁	F_2
4 (0.157) ≤ D < 6 (0.236)	12N	20N
D≥6 (0.236)	20N	25N

Digit 11	Available Tapings	Digit 9
L	Sizes 4 (0.157) < D < 11 (0.43	3) A., H
Μ		.,
JΗ	Sizes 6 (0.236) < D < 11 (0.43	3) C H
ΚI		o, o II

TPC Code Digit 11

Figure 2: Inside Crimp 100V... 1000V Figure 3: Outside Crimp 1000V

Tape and Reel Specifications

millimeters (inches)							
		Straight Leads		Crimped			
		Figure 1		Figure 2 & 3			
Description of Symbols		A (Avisert)	P (Panasert)	Avisert & Panasert			
Crimp angle	~			20°45°			
Crimp length	С			1.7 min.			
Lead diameter		0.60 ± 0.1					
Disc diameter	D	11 max.					
Lead hole diameter	Do	4.0 ± 0.2					
Disc thickness	Т	See Catalog					
Lead spacing	F	5.0 ^{+0.6} -0.2					
Component alignment, front-rear	Δh	0 ± 1					
Height of component from tape center	Н	19.5 ± 0.5	16.5 ± 0.5 - 0	_			
Height from tape center to crimp	Но	—	—	16 + 0.5 - 0			
Component height		32.25 max.	>23.5 <32.25	32.25 max.			
Distance from component leads to tape bottom		12 max.					
Tape width		18 ⁺¹ _{-0.5}					
Bonding tape width		5.5 min.					
Feed hole position	W ₁	9.0 ± 0.5					
Pitch between discs	between discs P		12.7 ± 1				
Feed hole pitch	Ро	12.7 ± 0.3					
Hole center to lead	P1		$3.85~\pm~0.7$				
Feed hole center to component center		6.35 ± 1					
Tape + bonding tape thickness		0.7 ± 0.2					
Total tape thickness. including lead		1.5 max.					

PACKAGING

SHIPPING CONTAINER

