

# Low Capacitance, Low Charge Injection, $\pm 15 \text{ V/} + 12 \text{ V}$ iCMOS Quad SPST Switches

Enhanced Product ADG1212-EP

### **FEATURES**

1 pF off capacitance
2.6 pF on capacitance
<1 pC charge injection
33 V supply range
120 Ω on resistance
Fully specified at ±15 V, +12 V
No V<sub>L</sub> supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP

Typical power consumption:  $<0.03 \mu W$ 

#### **ENHANCED PRODUCT FEATURES**

Supports defense and aerospace applications (AQEC standard)

Military temperature range: -55°C to +125°C Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request

### **APPLICATIONS**

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

### **GENERAL DESCRIPTION**

The ADG1212-EP is a monolithic complementary metal-oxide semiconductor (CMOS) device containing four independently selectable switches designed on an *i*CMOS\* (industrial CMOS) process. *i*CMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

#### Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

#### **FUNCTIONAL BLOCK DIAGRAM**

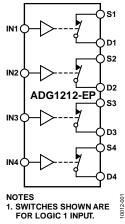



Figure 1.

The ultralow capacitance and charge injection of this switch makes it an ideal solution for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth makes the part suitable for video signal switching.

*i*CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

The ADG1212-EP contains four independent single-pole/ single-throw (SPST) switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

Additional application and technical information can be found in the ADG1212 data sheet.

### **PRODUCT HIGHLIGHTS**

- Ultralow capacitance.
- 2. <1 pC charge injection.
- 3. 3 V logic compatible digital inputs:  $V_{IH} = 2.0 \text{ V}$ ,  $V_{IL} = 0.8 \text{ V}$ .
- 4. No V<sub>L</sub> logic power supply required.
- 5. Ultralow power dissipation: <0.03 μW.
- 6. 16-lead TSSOP package.

# **TABLE OF CONTENTS**

| reatures                  | J |
|---------------------------|---|
| Enhanced Product Features | 1 |
| Applications              | 1 |
| Functional Block Diagram  | 1 |
| General Description       | 1 |
| Product Highlights        | 1 |
| Revision History          | 2 |
| Specifications            | 3 |
| Dual Supply               | 3 |

| Single Supply                               | 4  |
|---------------------------------------------|----|
| Absolute Maximum Ratings                    | 5  |
| ESD Caution                                 | 5  |
| Pin Configuration and Function Descriptions | 6  |
| Typical Performance Characteristics         | 7  |
| Test Circuits                               | 9  |
| Outline Dimensions                          | 11 |
| Ordering Guide                              | 11 |

### **REVISION HISTORY**

7/12—Rev. 0 to Rev. A

Changed Operating Temperature Range from  $-40^{\circ}$ C to  $+125^{\circ}$ C to  $-55^{\circ}$ C to  $+125^{\circ}$ C; Table 3......5

11/11—Revision 0: Initial Version

# **SPECIFICATIONS**

### **DUAL SUPPLY**

 $\rm V_{DD}$  = 15 V  $\pm$  10%,  $\rm V_{SS}$  = -15 V  $\pm$  10%, GND = 0 V, unless otherwise noted.

Table 1.

| Parameter                                                | 25°C   | −40°C to<br>+85°C | −55°C to<br>+125°C   | Unit         | Test Conditions/Comments                                                             |
|----------------------------------------------------------|--------|-------------------|----------------------|--------------|--------------------------------------------------------------------------------------|
| ANALOG SWITCH                                            |        |                   |                      |              |                                                                                      |
| Analog Signal Range                                      |        |                   | $V_{DD}$ to $V_{SS}$ | ٧            |                                                                                      |
| On Resistance (R <sub>ON</sub> )                         | 120    |                   | 55                   | Ωtyp         | $V_s = \pm 10 \text{V},  I_s = -1 \text{mA};  \text{see Figure 15}$                  |
| · Olv                                                    | 190    | 230               | 260                  | Ωmax         | $V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$                                 |
| On Resistance Match Between Channels (ΔR <sub>ON</sub> ) | 2.5    |                   |                      | Ωtyp         | $V_s = \pm 10 \text{ V}, I_s = -1 \text{ mA}$                                        |
| of hesistance water between charmers (anon)              | 6      | 10                | 11                   | Ω max        | , , = 10 1/15                                                                        |
| On Resistance Flatness (R <sub>FLAT(ON)</sub> )          | 20     | 10                | • •                  | Ωtyp         | $V_s = -5 \text{ V/0 V/+5 V}; I_s = -1 \text{ mA}$                                   |
| Off Resistance Flattiess (N <sub>FLAT(ON)</sub> )        | 57     | 72                | 79                   | $\Omega$ max | $V_S = -3$ V/O V/+3 V, $I_S = -1$ IIIA                                               |
| LEAKAGE CURRENTS                                         | 37     | 72                | 79                   | 12 111ax     | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$                                 |
|                                                          | . 0.00 |                   |                      | A 4          | 33                                                                                   |
| Source Off Leakage, I <sub>s</sub> (Off)                 | ±0.02  |                   |                      | nA typ       | $V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}$ ; see Figure 11                     |
|                                                          | ±0.1   | ±0.6              | ±1                   | nA max       |                                                                                      |
| Drain Off Leakage, $I_D$ (Off)                           | ±0.02  |                   |                      | nA typ       | $V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}$ ; see Figure 11                     |
|                                                          | ±0.1   | ±0.6              | ±1                   | nA max       |                                                                                      |
| Channel On Leakage, I <sub>D</sub> , I <sub>S</sub> (On) | ±0.02  |                   |                      | nA typ       | $V_s = V_D = \pm 10 \text{ V}$ ; see Figure 12                                       |
| 3 . 5 3                                                  | ±0.1   | ±0.6              | ±1                   | nA max       |                                                                                      |
| DIGITAL INPUTS                                           |        |                   |                      |              |                                                                                      |
| Input High Voltage, V <sub>INH</sub>                     |        |                   | 2.0                  | V min        |                                                                                      |
| Input Low Voltage, V <sub>INI</sub>                      |        |                   | 0.8                  | V max        |                                                                                      |
|                                                          | 0.005  |                   | 0.0                  |              | \ \ -\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                              |
| Input Current, I <sub>INL</sub> or I <sub>INH</sub>      | 0.005  |                   | .01                  | μA typ       | $V_{IN} = V_{INL} \text{ or } V_{INH}$                                               |
| 5: :: 11                                                 | 2.5    |                   | ±0.1                 | μA max       |                                                                                      |
| Digital Input Capacitance, C <sub>IN</sub>               | 2.5    |                   |                      | pF typ       |                                                                                      |
| DYNAMIC CHARACTERISTICS <sup>1</sup>                     |        |                   |                      |              |                                                                                      |
| t <sub>on</sub>                                          | 65     |                   |                      | ns typ       | $R_{L} = 300 \Omega, C_{L} = 35 pF$                                                  |
|                                                          | 80     | 95                | 110                  | ns max       | $V_s = 10 \text{ V}$ ; see Figure 18                                                 |
| t <sub>OFF</sub>                                         | 80     |                   |                      | ns typ       | $R_L = 300 \Omega, C_L = 35 pF$                                                      |
|                                                          | 100    | 115               | 135                  | ns max       | $V_s = 10 \text{ V}$ ; see Figure 18                                                 |
| Charge Injection                                         | -0.3   |                   |                      | pC typ       | $V_{s} = 0 \text{ V}, R_{s} = 0 \Omega, C_{l} = 1 \text{ nF}; \text{ see Figure 19}$ |
| Off Isolation                                            | 80     |                   |                      | dB typ       | $R_i = 50 \Omega$ , $C_i = 5 pF$ , $f = 1 MHz$ ; see Figure 13                       |
| Channel-to-Channel Crosstalk                             | 90     |                   |                      | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ; see Figure 14                       |
| Total Harmonic Distortion + Noise                        | 0.15   |                   |                      | % typ        | $R_1 = 10 \text{ k}\Omega$ , 5 V rms, f = 20 Hz to 20 kHz;                           |
|                                                          | 01.5   |                   |                      | 75 17 1      | see Figure 17                                                                        |
| –3 dB Bandwidth                                          | 1000   |                   |                      | MHz typ      | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 16                                     |
| C <sub>c</sub> (Off)                                     | 0.9    |                   |                      | pF typ       | $V_s = 0 \text{ V, } f = 1 \text{ MHz}$                                              |
| C <sub>5</sub> (O11)                                     | 1.1    |                   |                      | pF max       | $V_s = 0 \text{ V, } f = 1 \text{ MHz}$                                              |
| C (Off)                                                  | 1.1    |                   |                      | -            |                                                                                      |
| C <sub>D</sub> (Off)                                     |        |                   |                      | pF typ       | $V_s = 0 \text{ V, } f = 1 \text{ MHz}$                                              |
|                                                          | 1.2    |                   |                      | pF max       | $V_s = 0 V, f = 1 MHz$                                                               |
| $C_D$ , $C_S$ (On)                                       | 2.6    |                   |                      | pF typ       | $V_s = 0 V, f = 1 MHz$                                                               |
|                                                          | 3      |                   |                      | pF max       | $V_s = 0 \text{ V, } f = 1 \text{ MHz}$                                              |
| POWER REQUIREMENTS                                       |        |                   |                      |              | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$                                 |
| I <sub>DD</sub>                                          | 0.001  |                   |                      | μA typ       | Digital inputs = $0 \text{ V or V}_{DD}$                                             |
|                                                          |        | 1                 | 1.0                  | μA max       |                                                                                      |
| $I_{DD}$                                                 | 220    |                   |                      | μA typ       | Digital inputs = 5 V                                                                 |
|                                                          |        |                   | 420                  | μA max       | _ ,                                                                                  |
| I <sub>ss</sub>                                          | 0.001  |                   | -                    | μA typ       | Digital inputs = 0 V or V <sub>DD</sub>                                              |
| .33                                                      | 3.301  |                   | 1.0                  | μA max       |                                                                                      |
| L                                                        | 0.001  |                   | 1.0                  | μΑ typ       | Digital inputs = 5 V                                                                 |
| I <sub>ss</sub>                                          | 0.001  | 1                 | 1.0                  |              |                                                                                      |
|                                                          |        |                   | 1.0                  | μA max       |                                                                                      |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design, not subject to production test.

### **SINGLE SUPPLY**

 $V_{\text{DD}}$  = 12 V  $\pm$  10%,  $V_{\text{SS}}$  = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

| Parameter                                                | 25°C  | −40°C to<br>+85°C | −55°C to<br>+125°C      | Unit    | Test Conditions/Comments                                                                 |
|----------------------------------------------------------|-------|-------------------|-------------------------|---------|------------------------------------------------------------------------------------------|
| ANALOG SWITCH                                            |       |                   |                         |         |                                                                                          |
| Analog Signal Range                                      |       |                   | $0 \text{ V to V}_{DD}$ | V       |                                                                                          |
| On Resistance (R <sub>ON</sub> )                         | 300   |                   |                         | Ωtyp    | $V_s = 0 \text{ V to } 10 \text{ V, } I_s = -1 \text{ mA; see Figure } 15$               |
| <del></del>                                              | 475   | 567               | 625                     | Ωmax    | $V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$                                          |
| On Resistance Match Between Channels (ΔR <sub>ON</sub> ) | 4.5   |                   |                         | Ωtyp    | $V_s = 0 \text{ V to } 10 \text{ V, } I_s = -1 \text{ mA}$                               |
|                                                          | 12    | 26                | 27                      | Ω max   |                                                                                          |
| On Resistance Flatness (R <sub>FLAT(ON)</sub> )          | 60    |                   |                         | Ωtyp    | $V_s = 3 \text{ V/6 V/9 V}, I_s = -1 \text{ mA}$                                         |
| LEAKAGE CURRENTS                                         |       |                   |                         |         | $V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$                                          |
| Source Off Leakage, I <sub>s</sub> (Off)                 | ±0.02 |                   |                         | nA typ  | $V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure } 11$ |
|                                                          | ±0.1  | ±0.6              | ±1                      | nA max  |                                                                                          |
| Drain Off Leakage, I <sub>D</sub> (Off)                  | ±0.02 |                   |                         | nA typ  | $V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure } 11$ |
|                                                          | ±0.1  | ±0.6              | ±1                      | nA max  |                                                                                          |
| Channel On Leakage, ID, IS (On)                          | ±0.02 |                   |                         | nA typ  | $V_S = V_D = 1 \text{ V or } 10 \text{ V}$ ; see Figure 12                               |
| 5 5 5                                                    | ±0.1  | ±0.6              | ±1                      | nA max  |                                                                                          |
| DIGITAL INPUTS                                           |       |                   |                         |         |                                                                                          |
| Input High Voltage, V <sub>INH</sub>                     |       |                   | 2.0                     | V min   |                                                                                          |
| Input Low Voltage, V <sub>INI</sub>                      |       |                   | 0.8                     | V max   |                                                                                          |
| Input Current, I <sub>INI</sub> or I <sub>INH</sub>      | 0.001 |                   |                         | μA typ  | $V_{IN} = V_{INL} \text{ or } V_{INH}$                                                   |
|                                                          |       |                   | ±0.1                    | μA max  | IN INC. INC.                                                                             |
| Digital Input Capacitance, C <sub>IN</sub>               | 3     |                   |                         | pF typ  |                                                                                          |
| DYNAMIC CHARACTERISTICS <sup>1</sup>                     |       |                   |                         |         |                                                                                          |
| t <sub>on</sub>                                          | 80    |                   |                         | ns typ  | $R_L = 300 \Omega, C_L = 35 pF$                                                          |
|                                                          | 105   | 125               | 140                     | ns max  | $V_s = 8 \text{ V}$ ; see Figure 18                                                      |
| t <sub>OFF</sub>                                         | 90    |                   |                         | ns typ  | $R_L = 300 \Omega, C_L = 35  pF$                                                         |
|                                                          | 115   | 140               | 165                     | ns max  | $V_s = 8 \text{ V}$ ; see Figure 18                                                      |
| Charge Injection                                         | 0     |                   |                         | pC typ  | $V_{s} = 6 \text{ V}, R_{s} = 0 \Omega, C_{L} = 1 \text{ nF}; \text{ see Figure 19}$     |
| Off Isolation                                            | 80    |                   |                         | dB typ  | $R_1 = 50 \Omega$ , $C_1 = 5 pF$ , $f = 1 MHz$ ; see Figure 13                           |
| Channel-to-Channel Crosstalk                             | 90    |                   |                         | dB typ  | $R_i = 50 \Omega$ , $C_i = 5 \text{pF}$ , $f = 1 \text{MHz}$ ; see Figure 14             |
| –3 dB Bandwidth                                          | 900   |                   |                         | MHz typ | $R_1 = 50 \Omega$ , $C_1 = 5 pF$ ; see Figure 16                                         |
| C <sub>s</sub> (Off)                                     | 1.2   |                   |                         | pF typ  | $V_s = 6 \text{ V}, f = 1 \text{ MHz}$                                                   |
|                                                          | 1.4   |                   |                         | pF max  | $V_s = 6 \text{ V, } f = 1 \text{ MHz}$                                                  |
| C <sub>D</sub> (Off)                                     | 1.3   |                   |                         | pF typ  | $V_{s} = 6 \text{ V, } f = 1 \text{ MHz}$                                                |
|                                                          | 1.5   |                   |                         | pF max  | $V_{s} = 6 \text{ V, } f = 1 \text{ MHz}$                                                |
| $C_{D'}$ , $C_{S}$ (On)                                  | 3.2   |                   |                         | pF typ  | $V_{s} = 6 \text{ V}, f = 1 \text{ MHz}$                                                 |
| · · ·                                                    | 3.9   |                   |                         | pF max  | $V_{s} = 6 \text{ V, } f = 1 \text{ MHz}$                                                |
| POWER REQUIREMENTS                                       |       |                   |                         |         | V <sub>DD</sub> = 13.2 V                                                                 |
| I <sub>DD</sub>                                          | 0.001 |                   |                         | μA typ  | Digital inputs = 0 V or V <sub>DD</sub>                                                  |
|                                                          |       |                   | 1.0                     | μA max  |                                                                                          |
| I <sub>DD</sub>                                          | 220   |                   |                         | μA typ  | Digital inputs = 5 V                                                                     |
|                                                          |       |                   | 420                     | μA max  |                                                                                          |

 $<sup>^{\</sup>rm 1}\,\mbox{Guaranteed}$  by design, not subject to production test.

### **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

| Parameter                                                           | Rating                                                                     |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|
| $V_{DD}$ to $V_{SS}$                                                | 35 V                                                                       |
| V <sub>DD</sub> to GND                                              | −0.3 V to +25 V                                                            |
| V <sub>SS</sub> to GND                                              | +0.3 V to -25 V                                                            |
| Analog Inputs <sup>1</sup>                                          | $V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$<br>or 30 mA, whichever |
|                                                                     | occurs first                                                               |
| Digital Inputs <sup>1</sup>                                         | GND – 0.3 V to                                                             |
|                                                                     | $V_{DD}$ + 0.3 V or 30 mA, whichever occurs first                          |
| Peak Current, S or D                                                | 100 mA (pulsed at<br>1 ms, 10% duty cycle<br>maximum)                      |
| Continuous Current per Channel, S or D                              | 25 mA                                                                      |
| Operating Temperature Range                                         | −55°C to +125°C                                                            |
| Storage Temperature Range                                           | −65°C to +150°C                                                            |
| Junction Temperature                                                | 150°C                                                                      |
| 16-Lead TSSOP, θ <sub>JA</sub> Thermal<br>Impedance (4-Layer Board) | 112°C/W                                                                    |
| Lead Temperature, Soldering                                         | As per JEDEC J-STD-020                                                     |

<sup>&</sup>lt;sup>1</sup> Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

Table 4. ADG1212-EP Truth Table

| ADG1212-EP INx | Switch Condition |
|----------------|------------------|
| 1              | On               |
| 0              | Off              |

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

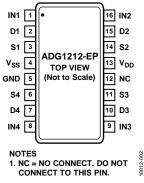



Figure 2. Pin Configuration

**Table 5. Pin Function Descriptions** 

| Pin No. | Mnemonic        | Description                                          |
|---------|-----------------|------------------------------------------------------|
| 1       | IN1             | Logic Control Input.                                 |
| 2       | D1              | Drain Terminal. This pin can be an input or output.  |
| 3       | S1              | Source Terminal. This pin can be an input or output. |
| 4       | V <sub>SS</sub> | Most Negative Power Supply Potential.                |
| 5       | GND             | Ground (0 V) Reference.                              |
| 6       | S4              | Source Terminal. This pin can be an input or output. |
| 7       | D4              | Drain Terminal. This pin can be an input or output.  |
| 8       | IN4             | Logic Control Input.                                 |
| 9       | IN3             | Logic Control Input.                                 |
| 10      | D3              | Drain Terminal. This pin can be an input or output.  |
| 11      | S3              | Source Terminal. This pin can be an input or output. |
| 12      | NC              | No Connection.                                       |
| 13      | $V_{DD}$        | Most Positive Power Supply Potential.                |
| 14      | S2              | Source Terminal. This pin can be an input or output. |
| 15      | D2              | Drain Terminal. This pin can be an input or output.  |
| 16      | IN2             | Logic Control Input.                                 |

### TYPICAL PERFORMANCE CHARACTERISTICS

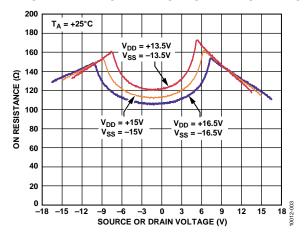



Figure 3. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Dual Supply

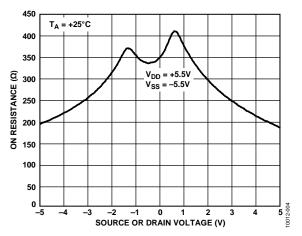



Figure 4. On Resistance as a Function of  $V_D(V_S)$  for Dual Supply

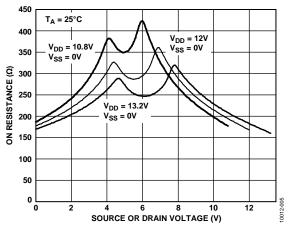



Figure 5. On Resistance as a Function of  $V_D(V_S)$  for Single Supply



Figure 6. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures, Dual Supply

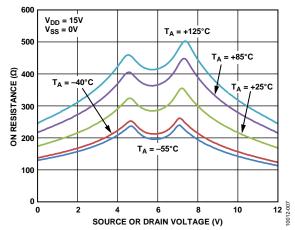



Figure 7. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures, Single Supply

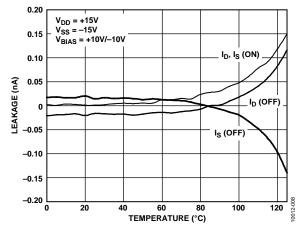



Figure 8. Leakage Currents as a Function of Temperature, Dual Supply

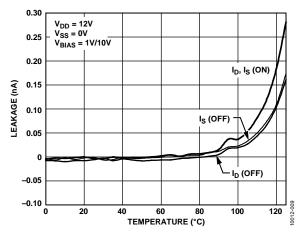



Figure 9. Leakage Currents as a Function of Temperature, Single Supply

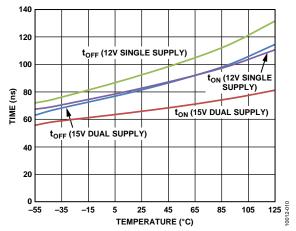



Figure 10.  $t_{ON}/t_{OFF}$  Times vs. Temperature

### **TEST CIRCUITS**

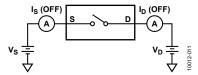



Figure 11. Off Leakage

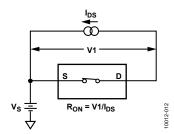



Figure 12. On Leakage

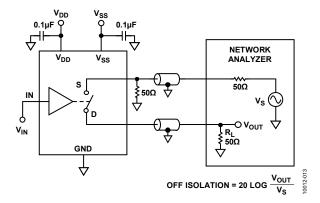



Figure 13. Off Isolation

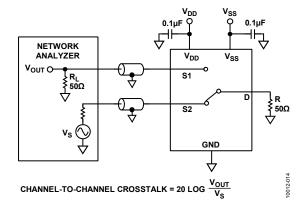



Figure 14. Channel-to-Channel Crosstalk

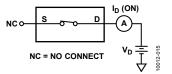



Figure 15. On Resistance

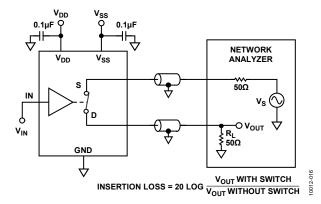



Figure 16. Bandwidth

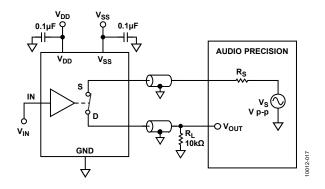



Figure 17. THD + Noise

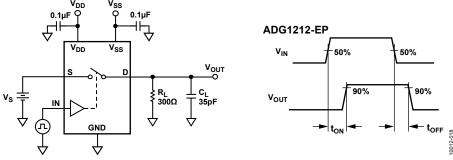



Figure 18. Switching Times

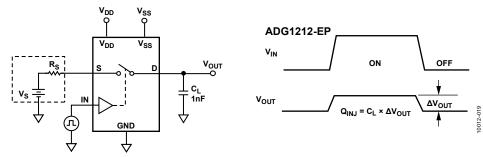
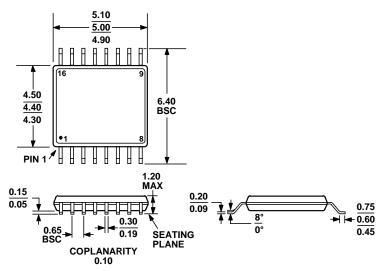




Figure 19. Charge Injection

# **OUTLINE DIMENSIONS**



COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 20. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

### **ORDERING GUIDE**

| Model             | Temperature Range | Package Description                               | Package Option |
|-------------------|-------------------|---------------------------------------------------|----------------|
| ADG1212SRU-EP-RL7 | −55°C to +125°C   | 16-Lead Thin Shrink Small Outline Package [TSSOP] | RU-16          |

**NOTES**