

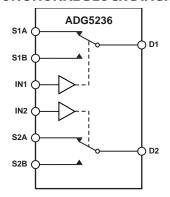
High Voltage Latch-Up Proof, Dual SPDT Switches

Data Sheet ADG5236

FEATURES

Latch-up immune under all circumstances
2.5 pF off source capacitance
12 pF off drain capacitance
-0.6 pC charge injection
Low leakage: 0.4 nA maximum at 85°C
±9 V to ±22 V dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at ±15 V, ±20 V, +12 V, and +36 V
V_{SS} to V_{DD} analog signal range

APPLICATIONS


High voltage signal routing Automatic test equipment Analog front-end circuits Precision data acquisition Industrial instrumentation Amplifier gain select Relay replacement

GENERAL DESCRIPTION

The ADG5236 is a monolithic CMOS device containing two independently selectable single-pole/double throw (SPDT) switches. An EN input on the LFCSP package enables or disables the device. When disabled, all channels switch off. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed together with high signal bandwidth make the device suitable for video signal switching.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 1 INPUT.

Figure 1. TSSOP Package

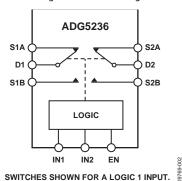


Figure 2. LFCSP Package

PRODUCT HIGHLIGHTS

- Trench Isolation Guards Against Latch-Up.
 A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
- 2. Ultralow Capacitance and <1 pC Charge Injection.
- Dual-Supply Operation.
 For applications where the analog signal is bipolar, the ADG5236 can be operated from dual supplies up to ±22 V.
- Single-Supply Operation.
 For applications where the analog signal is unipolar, the ADG5236 can be operated from a single rail power supply up to 40 V.
- 5. 3 V Logic-Compatible Digital Inputs. $V_{\text{INH}} = 2.0 \text{ V}, V_{\text{INL}} = 0.8 \text{ V}.$
- 6. No V_L Logic Power Supply Required.

ADG5236* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 ADG5236: High Voltage Latch-Up Proof, Dual SPDT Switches Data Sheet

REFERENCE DESIGNS 🖵

CN0269

REFERENCE MATERIALS \Box

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

DESIGN RESOURCES 🖵

- ADG5236 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG5236 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagrams	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
±15 V Dual Supply	3
±20 V Dual Supply	4
12 V Single Supply	5
36 V Single Supply	6
Continuous Current per Channel, Sx or Dx	7
REVISION HISTORY	
11/13—Rev. A to Rev. B	
Changes to Features and Applications Sections	
1/12 Pay 0 to Pay A	

7/11—Revision 0: Initial Version

Absolute Maximum Ratings	
ESD Caution	
Pin Configurations and Function Descriptions	9
Truth Tables for Switches	9
Typical Performance Characteristics	10
Test Circuits	14
Terminology	16
Trench Isolation	17
Applications Information	18
Outline Dimensions	19
Ordering Guide	19

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V max	
On Resistance, R _{ON}	160			Ω typ	$V_s = \pm 10 \text{ V}$, $I_s = -1 \text{ mA}$, see Figure 25
	200	250	280	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔRoN	1.4			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	38			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	50	65	70	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	0.01			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 27}$
-	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 27}$
-	0.1	0.4	1.2	nA max	
Channel On Leakage, I _D (On), I _S (On)	0.02			nA typ	$V_S = V_D = \pm 10 \text{ V}$, see Figure 24
3, - (, , , , , , , , , , , , , , , , ,	0.2	0.4	1.2	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002		0.0	_	\ \ \ -\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Input current, IINL or IINH	0.002		+0.1	μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
Digital Input Canaditance C	3		±0.1	μA max	
Digital Input Capacitance, C _{IN} DYNAMIC CHARACTERISTICS¹	3			pF typ	
	150				D 300 O C 35 pF
Transition Time, transition	150	200	215	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	230	280	315	ns max	$V_s = 10 \text{ V}$, see Figure 30
ton	170	265	200	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	215	265	300	ns max	$V_s = 10 \text{ V}$, see Figure 32
toff	160	205	225	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	185	205	225	ns max	$V_S = 10 \text{ V}$, see Figure 32
Break-Before-Make Time Delay, t _D	75		20	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	0.5		30	ns min	$V_{S1} = V_{S2} = 10 \text{ V, see Figure 31}$
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF},$ see Figure 33
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 26
−3 dB Bandwidth	266			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 29
Insertion Loss	−7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 29
C _s (Off)	2.5			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	12			pF typ	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$
C _D (On), C _s (On)	15			pF typ	$V_S = 0 V, f = 1 MHz$

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}	45			μA typ	Digital inputs = 0 V or V_{DD}
	55		70	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
V _{DD} /V _{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V max	
On Resistance, Ron	140			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}, \text{ see Figure 25}$
	160	200	230	Ω max	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match	1.3			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -1 \text{ mA}$
Between Channels, ΔR _{ON}				7.	
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	33			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -1 \text{ mA}$
	45	55	60	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)	0.01			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 27}$
-	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 27}$
3	0.1	0.4	1.2	nA max	
Channel On Leakage, ID (On), Is (On)	0.02			nA typ	$V_S = V_D = \pm 15 \text{ V}$, see Figure 24
3, ,	0.2	0.4	1.2	nA max	, ,
DIGITAL INPUTS				-	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, linL or linh	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
mpat carrent, int or inti	0.002		±0.1	μA max	TIN TONE OF THE
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹				p. ()p	
Transition Time, t _{TRANSITION}	150			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Transition Time, Ciransition	210	260	290	ns max	$V_S = 10 \text{ V}$, see Figure 30
ton	150	200	290	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
ton	190	235	267	1 ''	$V_S = 10 \text{ V}$, see Figure 32
+ .	155	233	207	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$
toff	180	200	215	ns typ	$V_S = 10 \text{ V}$, see Figure 32
Donali Dafana Malia Tina a Dalam t		200	215	ns max	_
Break-Before-Make Time Delay, t _D	60		20	ns typ	$R_L = 300 \Omega, C_L = 35 \text{pF}$
	0.6		30	ns min	$V_{S1} = V_{S2} = 10 \text{ V, see Figure 31}$
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_S = 0$ V, $R_S = 0$ Ω , $C_L = 1$ nF, see Figure 33
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 26
–3 dB Bandwidth	266			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 29
Insertion Loss	_7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 29

Rev. B | Page 4 of 20

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
C _s (Off)	2.5			pF typ	$V_S = 0 V, f = 1 MHz$
C _D (Off)	12			pF typ	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)	15			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I _{DD}	50			μA typ	Digital inputs = 0 V or V_{DD}
	70		110	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V max	
On Resistance, R _{ON}	350			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA, see}$ Figure 25
	500	610	700	Ω max	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On-Resistance Match Between Channels, ΔR _{ON}	3			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA}$
	20	21	22	Ω max	
On-Resistance Flatness, RFLAT (ON)	145			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
	280	335	370	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V},$ see Figure 27
	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V},$ see Figure 27
	0.1	0.4	1.2	nA max	
Channel On Leakage, I _D (On), I _S (On)	0.02			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$, see Figure 24
	0.2	0.4	1.2	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	220			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	390	430	490	ns max	$V_s = 8 V$, see Figure 30
ton	275			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	380	440	510	ns max	$V_s = 8 V$, see Figure 32
toff	160			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	195	225	245	ns max	$V_s = 8 V$, see Figure 32
Break-Before-Make Time Delay, t _D	145			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			65	ns min	$V_{S1} = V_{S2} = 8 \text{ V, see Figure 31}$
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_s = 6 \text{ V}, R_s = 0 \Omega, C_L = 1 \text{ nF, see}$ Figure 33

Parameter	25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 26
–3 dB Bandwidth	185			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 29
Insertion Loss	-11			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 29
C _s (Off)	3			pF typ	$V_S = 6 V, f = 1 MHz$
C _D (Off)	16			pF typ	$V_S = 6 V, f = 1 MHz$
C_D (On), C_S (On)	16			pF typ	$V_S = 6 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$
I_{DD}	40			μA typ	Digital inputs = 0 V or V_{DD}
			65	μA max	
V_{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V max	
On Resistance, R _{ON}	150			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA,}$ see Figure 25
	170	215	245	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	1.4			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	35			Ωtyp	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -1 \text{ mA}$
	50	60	65	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	0.01			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V},$ see Figure 27
	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V},$ see Figure 27
	0.1	0.4	1.2	nA max	
Channel On Leakage, I_D (On), I_S (On)	0.02			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V}$, see Figure 24
	0.2	0.4	1.2	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	180			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	250	275	305	ns max	$V_S = 18 \text{ V}$, see Figure 30
t _{ON}	170			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	225	265	295	ns max	$V_s = 18 V$, see Figure 32

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
toff	170			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	215	215	225	ns max	$V_S = 18 V$, see Figure 32
Break-Before-Make Time Delay, t _D	75			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			35	ns min	$V_{S1} = V_{S2} = 18 \text{ V, see Figure 31}$
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF},$ see Figure 33
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 26
–3 dB Bandwidth	266			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 29
Insertion Loss	-7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 29
C _s (Off)	2.5			pF typ	$V_S = 18 V, f = 1 MHz$
C _D (Off)	12			pF typ	$V_S = 18 V, f = 1 MHz$
C_D (On), C_S (On)	15			pF typ	$V_S = 18 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 39.6 \text{ V}$
IDD	85			μA typ	Digital inputs = 0 V or V_{DD}
	100		130	μA max	
V_{DD}			9/40	V min/V max	$GND = 0V, V_SS = 0V$

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, SxA, SxB, OR Dx

Table 5.

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, SxA, SxB, or Dx				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	19	7	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	30	7.7	2.8	mA max
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	21	7	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	31	7.7	2.8	mA max
$V_{DD} = 12 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	14	6.3	2.7	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	22.5	7.3	2.8	mA max
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	24	7.4	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	35	7.8	2.8	mA max

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Table 0.	
Parameter	Rating
V _{DD} to V _{SS}	48 V
V_{DD} to GND	−0.3 V to +48 V
V _{SS} to GND	+0.3 V to -48 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Peak Current, SxA, SxB, or Dx Pin	63 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, SxA, SxB, or Dx ²	Data + 15%
Temperature Range	
Operating	-40°C to +125°C
Storage	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	112°C/W
16-Lead LFCSP	30.4°C/W
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5)°C

¹ Overvoltages at the INx, SxA, SxB, and Dx pins are clamped by internal diodes. Limit the current to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

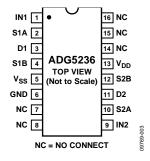


Figure 3. TSSOP Pin Configuration

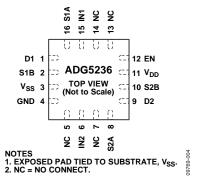


Figure 4. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input 1.
2	16	S1A	Source Terminal 1A. This pin can be an input or output.
3	1	D1	Drain Terminal 1. This pin can be an input or output.
4	2	S1B	Source Terminal 1B. This pin can be an input or output.
5	3	V_{SS}	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
7, 8, 14 to 16	5, 7, 13, 14	NC	No Connect. These pins are open.
9	6	IN2	Logic Control Input 2.
10	8	S2A	Source Terminal 2A. This pin can be an input or output.
11	9	D2	Drain Terminal 2. This pin can be an input or output.
12	10	S2B	Source Terminal 2B. This pin can be an input or output.
13	11	V_{DD}	Most Positive Power Supply Potential.
N/A ¹	12	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the INx logic inputs determine the on switches.
N/A¹	EP	Exposed Pad	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.

¹ N/A means not applicable.

TRUTH TABLES FOR SWITCHES

Table 8. TSSOP Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

Table 9. LFCSP Truth Table

EN	INx	SxA	SxB
0	X ¹	Off	Off
1	0	Off	On
1	1	On	Off

¹ X means don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_S, V_D (Dual Supply)

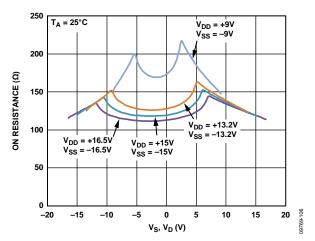


Figure 6. On Resistance vs. V_S, V_D (Dual Supply)

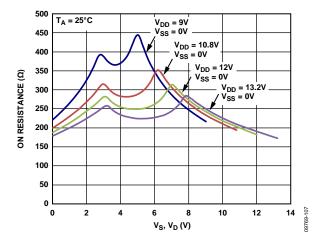


Figure 7. On Resistance vs. V_S , V_D (Single Supply)

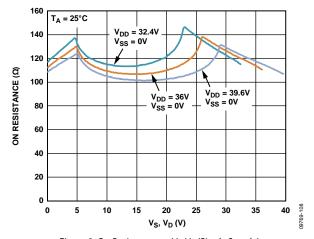


Figure 8. On Resistance vs. V_S , V_D (Single Supply)

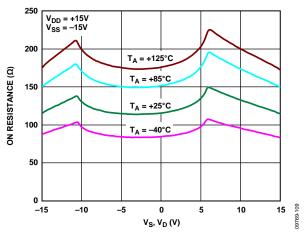


Figure 9. On Resistance vs. V_D or V_S for Different Temperatures, $\pm 15 \text{ V Dual Supply}$

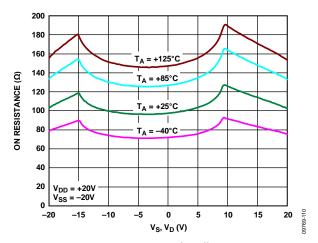


Figure 10. On Resistance vs. V_D or V_S for Different Temperatures, ± 20 V Dual Supply

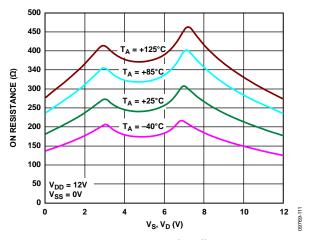


Figure 11. On Resistance vs. V_D or V_S for Different Temperatures, 12 V Single Supply

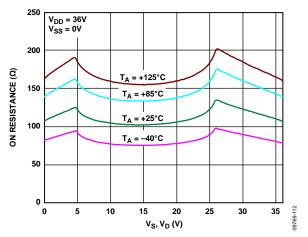


Figure 12. On Resistance vs. V_S or V_D for Different Temperatures, 36 V Single Supply

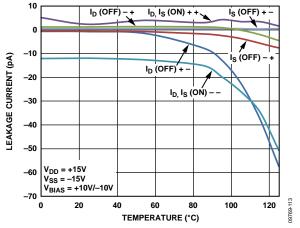


Figure 13. Leakage Current vs. Temperature, ±15 V Dual Supply

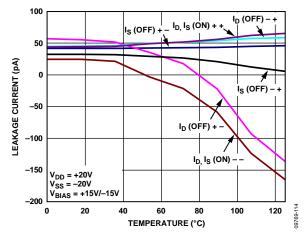


Figure 14. Leakage Current vs. Temperature, ±20 V Single Supply

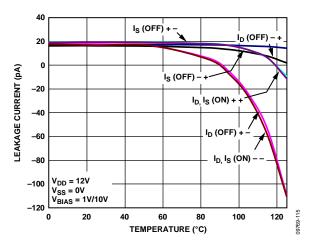


Figure 15. Leakage Current vs. Temperature, 12 V Single Supply

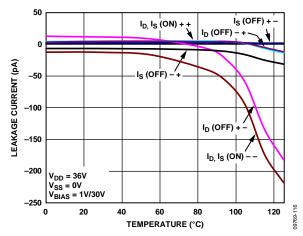


Figure 16. Leakage Current vs. Temperature, 36 V Single Supply

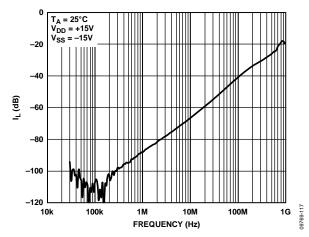


Figure 17. Off Isolation vs. Frequency

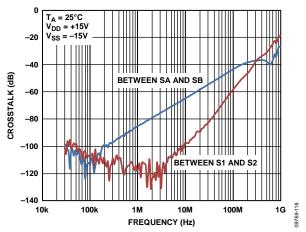


Figure 18. Crosstalk vs. Frequency

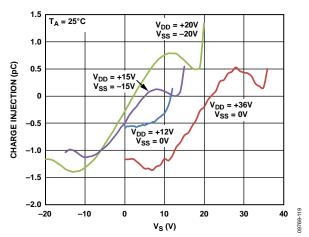


Figure 19. Charge Injection vs. Source Voltage

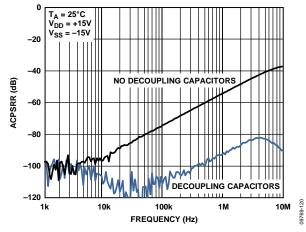


Figure 20. ACPSRR vs. Frequency

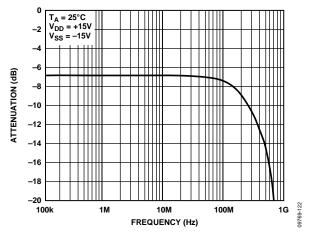


Figure 21. Bandwidth

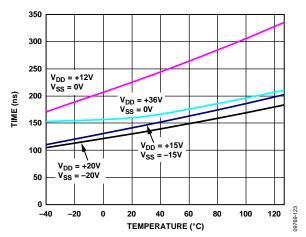


Figure 22. t_{TRANSITION} Time vs. Temperature

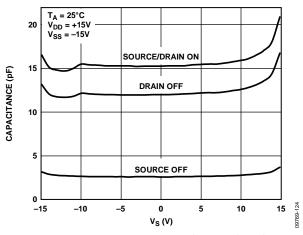


Figure 23. Capacitance vs. Source Voltage, Dual Supply

TEST CIRCUITS

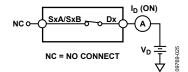


Figure 24. On Leakage

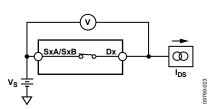


Figure 25. On Resistance

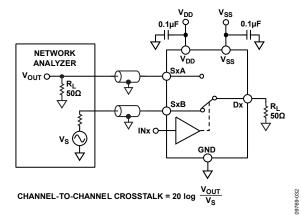


Figure 26. Channel-to-Channel Crosstalk

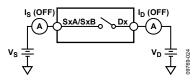


Figure 27. Off Leakage

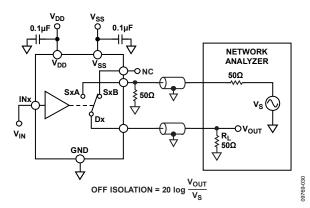


Figure 28. Off Isolation

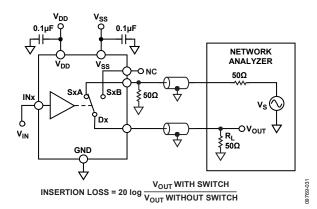


Figure 29. Bandwidth

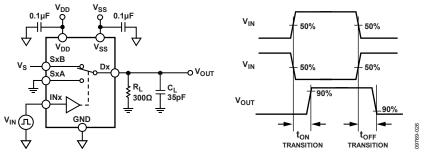


Figure 30. Switching Times

Figure 31. Break-Before-Make Time Delay t_D

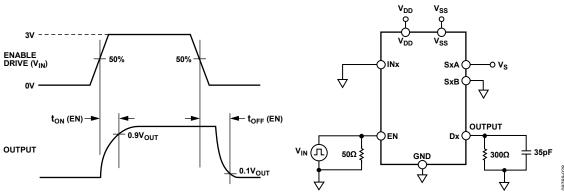


Figure 32. Enable Delay, ton (EN), toff (EN)

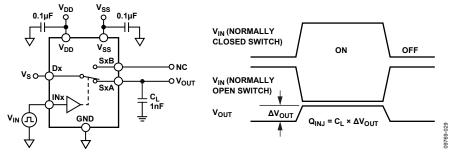


Figure 33. Charge Injection

TERMINOLOGY

Inn

I_{DD} represents the positive supply current.

I_{SS}

Iss represents the negative supply current.

V_D, V_S

 V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.

Ron

 $R_{\mbox{\scriptsize ON}}$ represents the ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT (ON)}

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range is represented by $R_{\rm FLAT\,(ON)}$.

Is (Off)

Is (Off) is the source leakage current with the switch off.

ID (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{\text{D}}\left(On\right)$ and $I_{\text{S}}\left(On\right)$ represent the channel leakage currents with the switch on.

\mathbf{V}_{INL}

 $V_{\mbox{\scriptsize INL}}$ is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

I_{INL} , I_{INH}

 I_{INL} and I_{INH} represent the low and high input currents of the digital inputs.

C_D (Off)

C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

C_S (Off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 C_D (On) and C_S (On) represent on switch capacitances, which are measured with reference to ground.

C_{IN}

C_{IN} is the digital input capacitance.

ton

 t_{ON} represents the delay between applying the digital control input and the output switching on.

toF

t_{OFF} represents the delay between applying the digital control input and the output switching off.

tn

 $t_{\rm D}$ represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TRENCH ISOLATION

In the ADG5236, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

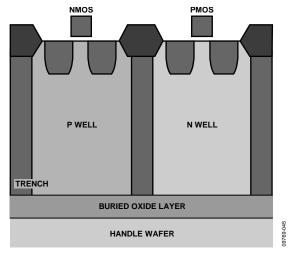
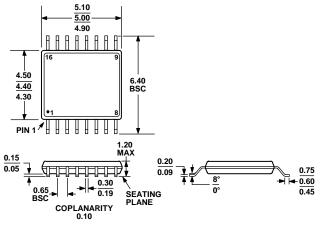
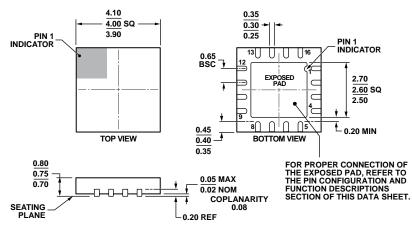



Figure 34. Trench Isolation

APPLICATIONS INFORMATION


The ADG52xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5236 high voltage switches allow single-supply operation from 9 V to 40 V and dual supply operation from ± 9 V to ± 22 V.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 36. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-16-17) Dimensions shown in millimeters

08-16-2010-C

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5236BRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5236BRUZ-RL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5236BCPZ-RL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17

¹ Z = RoHS Compliant Part.

NOTES