

3 Ω , 4-/8-Channel Multiplexers in Chip Scale Package

ADG758/ADG759

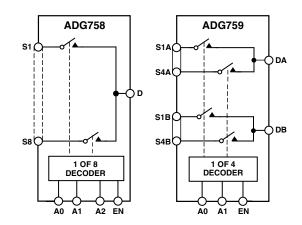
FEATURES

1.8 V to 5.5 V Single Supply
±2.5 V Dual Supply
3 Ω ON Resistance
0.75 Ω ON Resistance Flatness
100 pA Leakage Currents
14 ns Switching Times
Single 8-to-1 Multiplexer ADG758
Differential 4-to-1 Multiplexer ADG759
20-Lead 4 mm × 4 mm Chip Scale Package
Low Power Consumption
TTL-/CMOS-Compatible Inputs
For Functionally Equivalent Devices in 16-Lead TSSOP
Package, See ADG708/ADG709

APPLICATIONS

Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery-Powered Systems

GENERAL DESCRIPTION


The ADG758 and ADG759 are low voltage, CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG758 switches one of eight inputs (S1–S8) to a common output, D, as determined by the 3-bit binary address lines A0, A1, and A2. The ADG759 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low power consumption and an operating supply range of 1.8 V to 5.5 V make the ADG758 and ADG759 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.

These switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low ON resistance and leakage currents. ON resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies.

The ADG758 and ADG759 are available in 20-lead chip scale packages.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- 1. Small 20-Lead 4 mm × 4 mm Chip Scale Packages (CSP).
- 2. Single/Dual Supply Operation. The ADG758 and ADG759 are fully specified and guaranteed with 3 V and 5 V single-supply and ±2.5 V dual-supply rails.
- 3. Low R_{ON} (3 Ω Typical).
- 4. Low Power Consumption ($<0.01 \mu W$).
- 5. Guaranteed Break-Before-Make Switching Action.

REV.B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/461-3113 © Analog Devices, Inc., 2013

$ADG758/ADG759 — SPECIFICATIONS^{1} \ (v_{DD} = 5 \ v \ \pm \ 10\%, \ v_{SS} = 0 \ v, \ \text{GND} = 0 \ v, \ \text{unless otherwise noted.})$

	B Version -40°C			
Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~V~to~V_{DD}$	V	
ON Resistance (R _{ON})	3	DD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
0107	4.5	5	Ω max	Test Circuit 1
ON Resistance Match Between		0.4	Ω typ	
Channels (ΔR_{ON})		0.8	Ω max	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
ON Resistance Flatness $(R_{FLAT(ON)})$	0.75	0.0	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
OTV Teolotairee Tiatriess (TGLAT(ON))	0.13	1.2	Ω max	13 0 1 to 1DD, 1DS 10 IM1
LEAKAGE CURRENTS				$V_{\rm DD}$ = 5.5 V
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.1	± 0.75	nA max	Test Circuit 3
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_D = V_S = 1 \text{ V}$, or 4.5 V, Test Circuit 4
	±0.1	±0.75	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	14		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; Test Circuit
		25	ns max	$V_{S1} = 3 \text{ V/0 V}, V_{S8} = 0 \text{ V/3 V}$
Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		1	ns min	$V_S = 3 V$; Test Circuit 6
t_{ON} (EN)	14		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
		25	ns max	$V_S = 3 V$; Test Circuit 7
t_{OFF} (EN)	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		12	ns max	$V_S = 3 V$; Test Circuit 7
Charge Injection	±3		pC typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 8
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	60		ID.	Test Circuit 9
Channel-to-Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 10
−3 dB Bandwidth	55		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 11
C_{S} (OFF)	13		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)				
ADG758	85		pF typ	f = 1 MHz
ADG759	42		pF typ	f = 1 MHz
$C_D, C_S(ON)$				
ADG758	96		pF typ	f = 1 MHz
ADG759	48		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 5.5 V
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

NOTES

Specifications subject to change without notice.

-2- REV. B

 $^{^{1}}Temperature$ range is as follows: B Version: $-40\,^{\circ}C$ to $+85\,^{\circ}C.$

²Guaranteed by design, not subject to production test.

$\label{eq:continuous} \textbf{SPECIFICATIONS}^{1} \ \, (\textbf{V}_{\textbf{DD}} = \textbf{3} \ \textbf{V} \ \pm \ \textbf{10\%}, \ \textbf{V}_{\textbf{SS}} = \textbf{0} \ \textbf{V}, \ \textbf{GND} = \textbf{0} \ \textbf{V}, \ \textbf{unless otherwise noted.})$

	B Version				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH Analog Signal Range ON Resistance (R_{ON}) ON Resistance Match Between Channels (ΔR_{ON})	8 11	0 V to V _{DD} 12 0.4 1.2	V Ω typ Ω max Ω typ Ω max	V_S = 0 V to V_{DD} , I_{DS} = 10 mA; Test Circuit 1 V_S = 0 V to V_{DD} , I_{DS} = 10 mA	
LEAKAGE CURRENTS				$V_{\rm DD} = 3.3 \text{ V}$	
Source OFF Leakage I_S (OFF) Drain OFF Leakage I_D (OFF) Channel ON Leakage I_D , I_S (ON)	± 0.01 ± 0.1 ± 0.01 ± 0.1 ± 0.1 ± 0.01 ± 0.01	±0.3 ±0.75 ±0.75	nA typ nA max nA typ nA max nA typ nA max nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$ Test Circuit 2 $V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$ Test Circuit 3 $V_S = V_D = 1 \text{ V or 3 V};$ Test Circuit 4	
DIGITAL INPUTS					
Input High Voltage, V_{INH} Input Low Voltage, V_{INL} Input Current		2.0 0.8	V min V max		
I _{INL} or I _{INH}	0.005	±0.1	μΑ typ μΑ max	$V_{IN} = V_{INL}$ or V_{INH}	
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
t _{TRANSITION}	18	30	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$; Test Circuit 5 $V_{S1} = 2 V/0 V$, $V_{S2} = 0 V/2 V$	
Break-Before-Make Time Delay, t _D	8	1	ns typ ns min	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 2 V$; Test Circuit 6	
t_{ON} (EN)	18	30	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 2 V$; Test Circuit 7	
t_{OFF} (EN)	8	15	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 2 V$; Test Circuit 7	
Charge Injection	±3	19	pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 8	
Off Isolation	-60 -80		dB typ dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$ $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 9	
Channel-to-Channel Crosstalk	-60 -80		dB typ dB typ	R_L = 50 Ω , C_L = 5 pF, f = 10 MHz R_L = 50 Ω , C_L = 5 pF, f = 1 MHz; Test Circuit 10	
−3 dB Bandwidth C _S (OFF)	55 13		MHz typ pF typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 11 $f = 1 MHz$	
C_D (OFF)					
ADG758 ADG759 C _D , C _S (ON)	85 42		pF typ pF typ	f = 1 MHz f = 1 MHz	
ADG758 ADG759	96 48		pF typ pF typ	f = 1 MHz f = 1 MHz	
POWER REQUIREMENTS I_{DD}	0.001	1.0	μΑ typ μΑ max	V _{DD} = 3.3 V Digital Inputs = 0 V or 3.3 V	

REV. B -3-

¹Temperature ranges are as follows: B Version: −40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG758/ADG759-SPECIFICATIONS1

DUAL SUPPLY ($V_{DD} = +2.5 \text{ V} \pm 10\%$, $V_{SS} = -2.5 \text{ V} \pm 10\%$, GND = 0 V, unless otherwise noted.)

Parameter		B Vers	sion		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ m V_{SS}$ to $ m V_{DD}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON Resistance (R _{ON})			Ω typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.5	-		Test Circuit 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) ±0.01 ±0.3 nA typ nA max V _S = +2.25 V ₁ -1.25 V ₂ V ₂ = -1.25 V ₂ +2.25 V ₃ 1.25 V ₄ V ₂ = -1.25 V ₄ +2.25 V ₅ Test Circuit 2 V _S = +2.25 V ₄ -1.25 V ₄ V ₂ = -1.25 V ₄ +2.25 V ₅ Test Circuit 3 V _S = +2.25 V ₄ -1.25 V ₄ V ₂ = -1.25 V ₄ +2.25 V ₅ Test Circuit 3 V _S = +2.25 V ₄ -1.25 V ₅ Test Circuit 4 v ₁ v ₂ + v ₂ v ₃ v ₄ v ₅ V ₅ = -1.25 V ₄ +2.25 V ₅ Test Circuit 3 V _S = -2.25 V ₄ -1.25 V ₅ v ₅ = -1.25 V ₄ +2.25 V ₅ Test Circuit 4 v ₂ v ₃ v ₄ v ₅ v ₅ v ₅ v ₅ v ₅ v ₆ v ₆ v ₇ v ₇ v ₇ v ₈ v ₈ v ₇ v ₈		0.6	0.8		0 00 22-20
	ON Resistance Flatness $(R_{FLAT(ON)})$	0.6	1.0		$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.0	Ω max	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source OFF Leakage I _S (OFF)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 0.3	nA max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain OFF Leakage I _D (OFF)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 0.75		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Channel ON Leakage I_D , I_S (ON)				$V_S = V_D = +2.25 \text{ V/}-1.25 \text{ V}$; Test Circuit 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.1	±0.75	nA max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIGITAL INPUTS				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.7	V min	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Input Low Voltage, V _{INL}		0.7	V max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Current				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{INL} or I _{INH}	0.005			$V_{IN} = V_{INL}$ or V_{INH}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 0.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{IN} , Digital Input Capacitance	2		pF typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS ²				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{TRANSITION}	14		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; Test Circuit 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	ns max	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	ns min	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{ON} (EN)	14		ns typ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	ns max	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{OFF} (EN)	8		ns typ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			15		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge Injection	±3		pC typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCCI 1	60		100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off Isolation				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-80		aB typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Channel to Channel Creestalls	60		dP tun	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chamier-to-Chamier Crosstaik				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-60		ав тур	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3 dR Bandwidth	55		MHz typ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				P- 'JP	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= ' '	85		pF tvp	f = 1 MHz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				I JE	
ADG759 48 pF typ $f = 1$ MHz POWER REQUIREMENTS I_{DD} 0.001 μA typ Digital Inputs = 0 V or 2.75 V I_{SS} 0.001 μA typ V _{SS} = -2.75 V		96		pF typ	f = 1 MHz
I_{DD} 0.001 μ A typ Digital Inputs = 0 V or 2.75 V I_{SS} 0.001 μ A max μ A typ $V_{SS} = -2.75$ V	ADG759	48			f = 1 MHz
I_{DD} 0.001 μ A typ Digital Inputs = 0 V or 2.75 V I_{SS} 0.001 μ A max μ A typ $V_{SS} = -2.75$ V	POWER REQUIREMENTS				$V_{DD} = +2.75 \text{ V}$
I_{SS} 1.0 $\mu A \max$ $\mu A \exp$ $V_{SS} = -2.75 V$	-	0.001		uA tvp	
I_{SS} 0.001 $\mu A \text{ typ}$ $V_{SS} = -2.75 \text{ V}$	עע		1.0		g
	I_{SS}	0.001			$V_{SS} = -2.75 \text{ V}$
			1.0		

-4-

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Parameter	Rating
V _{DD} to V _{SS}	7 V
V _{DD} to GND	–0.3 V to +7 V
V _{SS} to GND	+0.3 V to -3.5 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} +0.3 V or 30 mA, Whichever Occurs First
Digital Inputs ¹	–0.3 V to V _{DD} +0.3 V or 30 mA, Whichever Occurs First
Peak Current, S or D	100 mA (Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (B Version)	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Chip Scale Package, θ_{JA} Thermal Impedance	32°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. ADG758 Truth Table

A2	A1	A0	EN	Switch Condition
Χ	Χ	Χ	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

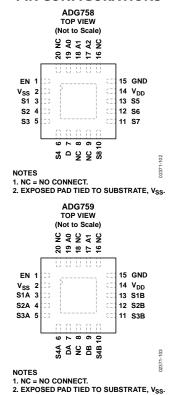

X = Don't Care

Table II. ADG759 Truth Table

A 1	A0	EN	ON Switch Pair
Χ	Χ	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

X = Don't Care

PIN CONFIGURATIONS

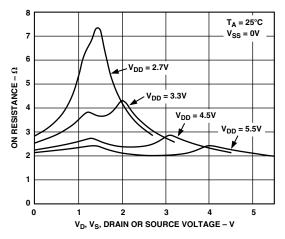
¹ Overvoltages at EN, A, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Input Current of the Digital Input

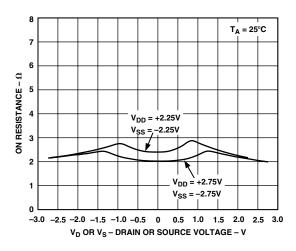
Positive Supply Current

Negative Supply Current

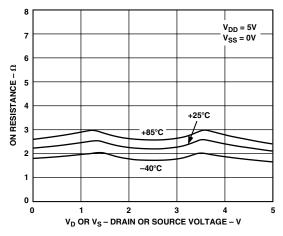
 $I_{INL}(I_{INH})$

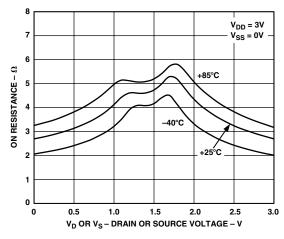

 I_{DD} I_{SS}

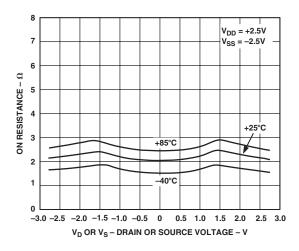
TERMINOLOGY

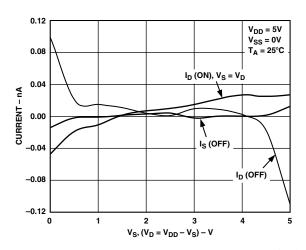

 V_{DD} Most Positive Power Supply Potential V_{SS} Most Negative Power Supply in a dual-supply application. In single-supply applications, this should be tied to ground at the device. Ground (0 V) Reference **GND** S Source Terminal. May be an input or output. D Drain Terminal. May be an input or output. ΙN Logic Control Input R_{ON} Ohmic Resistance between D and S Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over $R_{FLAT(ON)}$ the specified analog signal range. I_S (OFF) Source Leakage Current with the Switch OFF I_D (OFF) Drain leakage Current with the Switch OFF I_D , I_S (ON) Channel Leakage current with the Switch ON $V_D(V_S)$ Analog Voltage on Terminals D, S C_S (OFF) OFF Switch Source Capacitance. Measured with reference to ground. C_D (OFF) OFF Switch Drain Capacitance. Measured with reference to ground. $C_D, C_S(ON)$ ON Switch Capacitance. Measured with reference to ground. Digital Input Capacitance C_{IN} Delay Time measured between the 50% and 90% points of the digital inputs and the switch ON condition when **t**TRANSITION switching from one address state to another. t_{ON} (EN) Delay Time between the 50% and 90% points of the EN digital input and the switch ON condition. Delay Time between the 50% and 90% points of the EN digital input and the switch OFF condition. toff (EN) OFF Time measured between the 80% points of both switches when switching from one address state to another. topen Off Isolation A measure of unwanted signal coupling through an OFF switch. Crosstalk A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. Charge A measure of the glitch impulse transferred from the digital input to the analog output during switching. Injection On Response The Frequency Response of the ON Switch. On Loss The Loss Due to the ON Resistance of the Switch V_{INL} Maximum Input Voltage for Logic "0" Minimum Input Voltage for Logic "1" V_{INH}

-6- REV. B

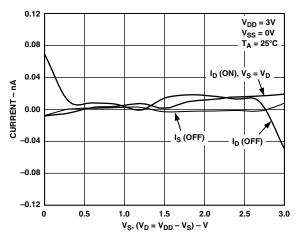

Typical Performance Characteristics—ADG758/ADG759


TPC 1. ON Resistance as a Function of V_D (V_S) for Single Supply

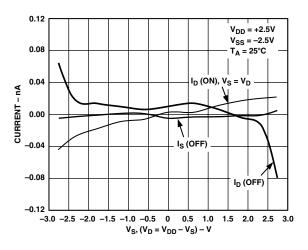

TPC 2. ON Resistance as a Function of V_D (V_S) for Dual Supply


TPC 3. ON Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

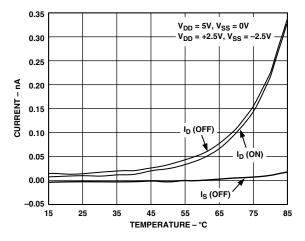
TPC 4. ON Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

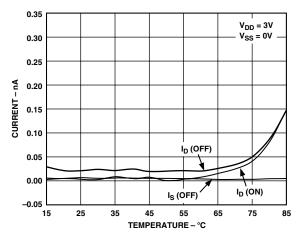


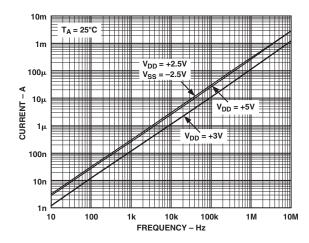
TPC 5. ON Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

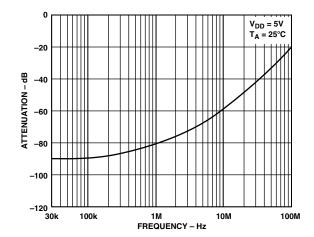


TPC 6. Leakage Currents as a Function of V_D (V_S)

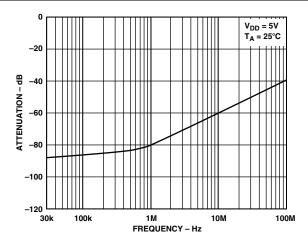

REV. B -7-


TPC 7. Leakage Currents as a Function of V_D (V_S)

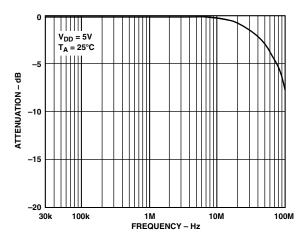

TPC 8. Leakage Currents as a Function of V_D (V_S)


TPC 9. Leakage Currents as a Function of Temperature

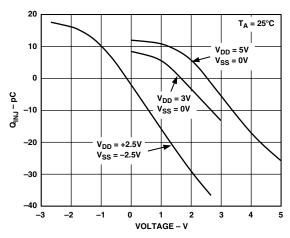
TPC 10. Leakage Currents as a Function of Temperature



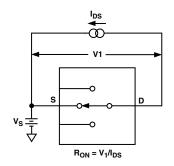
TPC 11. Supply Current vs. Input Switching Frequency

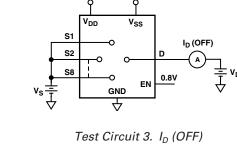


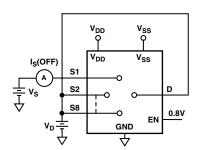
TPC 12. OFF Isolation vs. Frequency


8 REV. B

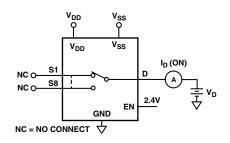
TPC 13. Crosstalk vs. Frequency


TPC 14. ON Response vs. Frequency

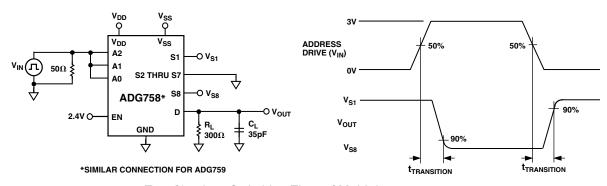

TPC 15. Charge Injection vs. Source Voltage

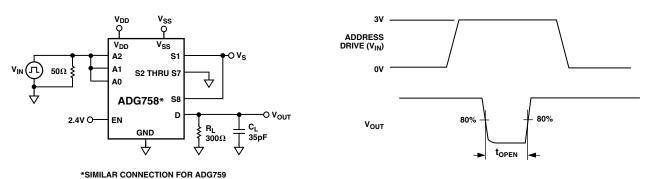

REV. B _9_

Test Circuits

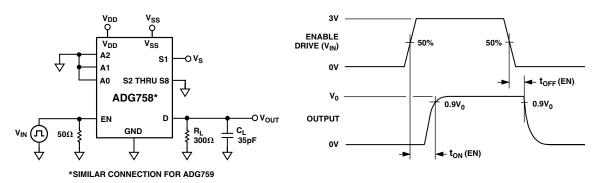


Test Circuit 1. ON Resistance

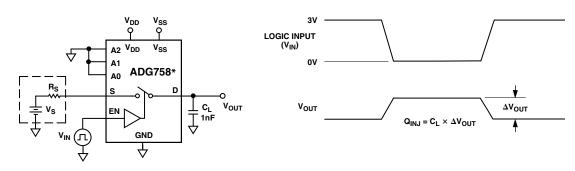



Test Circuit 2. I_S (OFF)

Test Circuit 4. I_D (ON)

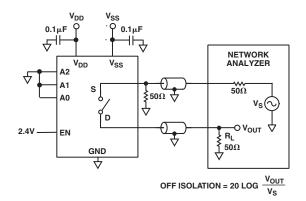


Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}

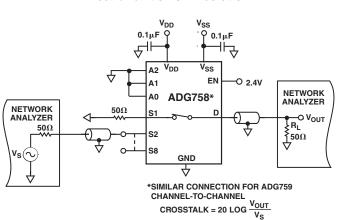


Test Circuit 6. Break-Before-Make Delay, t_{OPEN}

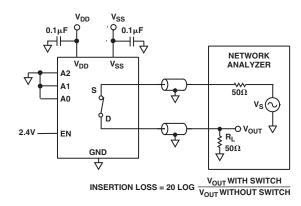
-10- REV. B



Test Circuit 7. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

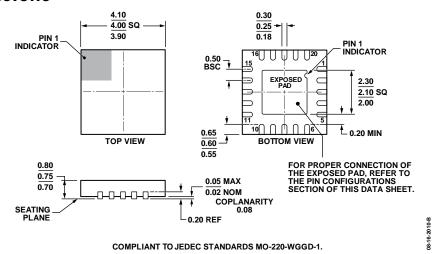


*SIMILAR CONNECTION FOR ADG759


Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation

Test Circuit 10. Channel-to-Channel Crosstalk


Test Circuit 11. Bandwidth

Power-Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in the data sheet. Digital and analog inputs should always be applied after power supplies and ground. For single-supply operation, $V_{\rm SS}$ should be tied to GND as close to the device as possible.

REV. B -11-

OUTLINE DIMENSIONS

20-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-20-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG758BCPZ	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-20-6
ADG758BCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-20-6
ADG759BCPZ	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-20-6
ADG759BCPZ-REEL	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-20-6
ADG759BCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package (LFCSP WO)	CP-20-6

¹ Z = RoHS Compliant Part.

REVISION HISTORY

3/13—Rev. A to Rev. B

Updated Outline Dimensions12
Changes to Ordering Guide
5/02—Rev. 0 to Rev. A
Edits to General Description section1
Updated Outline Drawings

