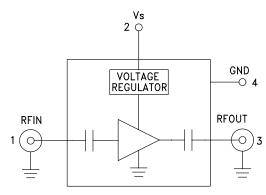


HMC-C002

WIDEBAND LNA MODULE 2 - 20 GHz



Typical Applications

The HMC-C002 Wideband LNA is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation
- Fiber Optics

Functional Diagram

Features

Noise Figure: 2 dB @ 8 GHz Flat Gain: 13 dB ± 0.5 dB P1dB Output Power: +18 dBm @ 8 GHz 50 Ohm Matched Input/Output Regulated Supply and Bias Sequencing Hermetically Sealed Module Field Replaceable SMA connectors -55 °C to +85 °C Operating Temperature

General Description

The HMC-C002 is a GaAs MMIC pHEMT Low Noise Distributed Amplifier in a miniature, hermetic module with replaceable SMA connectors which operates between 2 and 20 GHz. The self-biased amplifier provides 13 dB of gain, 2 to 3 dB noise figure and up to +18 dBm of output power at 1 dB gain compression while requiring a single +12V supply. Gain flatness is excellent from 2 - 18 GHz making the HMC-C002 ideal for EW, ECM RADAR and test equipment applications. The wideband amplifier I/Os are internally matched to 50 Ohms and are internally DC blocked.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vs= +11.6V to +12.4V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	2.0 - 6.0		6.0 - 12.0		12.0 - 20.0		GHz			
Gain	12	14		11	13		10	12		dB
Gain Flatness		±.025			±0.5			±0.5		dB
Gain Variation Over Temperature		0.008	0.015		0.008	0.015		0.008	0.015	dB/ °C
Noise Figure		2.5	4.5		2.0	3.0		3.0	5.0	dB
Input Return Loss		17			18			18		dB
Output Return Loss		12			15			8		dB
Output Power for 1 dB Compression (P1dB)	15	18		13	16		9	12		dBm
Saturated Output Power (Psat)		21.5			21			19		dBm
Output Third Order Intercept (IP3)		26.5			26			23		dBm
Spurious Response		-50			-60			-60		dBc
Supply Current		93			93			93		mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC-C002* PRODUCT PAGE QUICK LINKS

Last Content Update: 11/29/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Application Notes

 AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers

Data Sheet

• HMC-C002 Data Sheet

TOOLS AND SIMULATIONS \square

• HMC-C002 S-Parameter

REFERENCE MATERIALS

Technical Articles

 Wideband Amplifier and Prescaler Modules Cover DC to 20 GHz

DESIGN RESOURCES

- HMC-C002 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

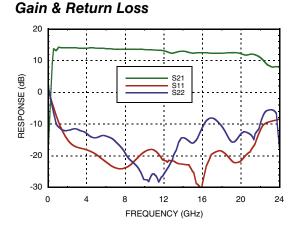
View all HMC-C002 EngineerZone Discussions.

SAMPLE AND BUY

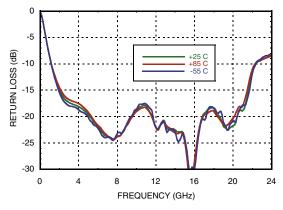
Visit the product page to see pricing options.

TECHNICAL SUPPORT

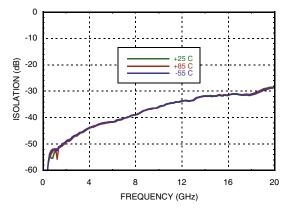
Submit a technical question or find your regional support number.

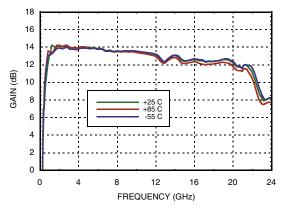

DOCUMENT FEEDBACK

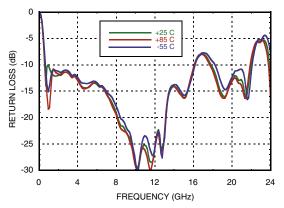
Submit feedback for this data sheet.

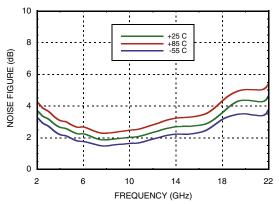


HMC-C002

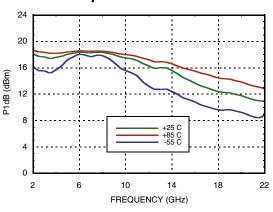

WIDEBAND LNA MODULE 2 - 20 GHz


Input Return Loss vs. Temperature

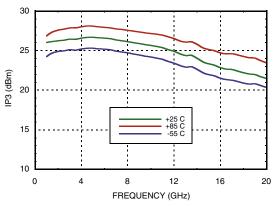

Reverse Isolation vs. Temperature

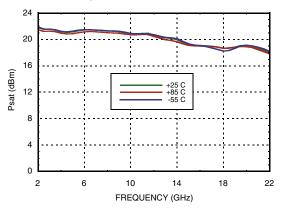


Output Return Loss vs. Temperature



Noise Figure vs. Temperature




WIDEBAND LNA MODULE 2 - 20 GHz

Output IP3 vs. Temperature

Psat vs. Temperature

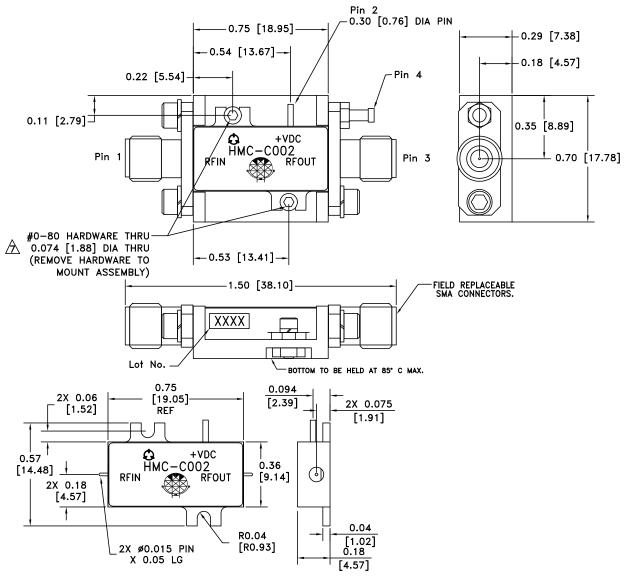
Absolute Maximum Ratings

Bias Supply Voltage (Vs)	+11 Vdc to +13 Vdc
RF Input Power (RFIN)	+18 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN & RF Ground	RF input connector, SMA female, field replaceable. This pin is AC coupled and matched to 50 Ohms.	
2	Vs	Power supply voltage for the amplifier.	
3	RFOUT & RF Ground	RF output connector, SMA female. This pin is AC coupled and matched to 50 Ohms.	
4	GND	Power supply ground.	


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC-C002

WIDEBAND LNA MODULE 2 - 20 GHz

Outline Drawing

Package Information

Package Type	C-2
Package Weight ^[1]	11.2 gms ^[2]
Spacer Weight	N/A

[1] Includes the connectors

[2] ±1 gms Tolerance

NOTES:

1. PACKAGE, LEADS, COVER MATERIAL: KOVAR™

- 2. BRACKET MATERIAL: ALUMINUM
- 3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 75 MICROINCHES MIN.
- 4. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. TOLERANCES ±.005 [0.13] UNLESS OTHERWISE SPECIFIED.
- 6. FIELD REPLACEABLE SMA CONNECTORS. TENSOLITE 5602 - 5CCSF OR EQUIVALENT.
- TO MOUNT MODULE TO SYSTEM PLATFORM REPLACE 0 -80 HARDWARE WITH DESIRED MOUNTING SCREWS.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.