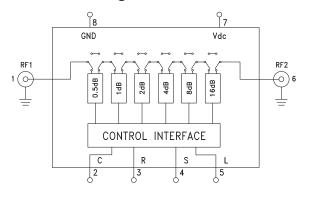


0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz



Typical Applications

The HMC-C018 is ideal for:

- Telecom Infrastructure
- Military Radio, Radar & ECM
- Space Systems
- Test Instrumentation

Functional Diagram

Features

0.5 dB LSB Steps to 31.5 dB

CMOS Compatible Serial Data Interface

Typical Bit Error: ±0.3 dB

Hermetically Sealed Module

Field Replaceable SMA Connectors

-55 °C to +85 °C Operating Temperature

General Description

The HMC-C018 is a DC to 13 GHz 6-bit GaAs IC Digital Serial Control Attenuator housed in a miniature hermetic module. This wideband attenuator features 3.6 dB typical insertion loss, +38 dBm input IP3, and bit values of 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent with ± 0.3 dB typical step error. A six bit CMOS compatible serial control word is used to select each attenuation state and a single Vdc bias of -5V allows operation at frequencies down to DC. Removable SMA connectors can be detached to allow direct connection of the module's I/O pins to a microstrip or coplanar circuit.

Electrical Specifications, $T_A = +25$ °C, with Vdc = -5V and 0/+5V CMOS Control

Parameter	Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss	DC - 4.0 GHz 4.0 - 8.0 GHz 8.0 - 13 .0 GHz		3.2 3.6 5.0	3.7 4.1 6.0	dB dB dB
Attenuation Range	DC - 13.0 GHz		31.5		dB
Return Loss (RF1 & RF2, All Atten. States)	DC - 8.0 GHz 8.0 - 13.0 GHz		15 10		dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) All States 0.5 - 27.5 dB 28.0 - 31.5 dB All States	DC - 3.0 GHz 3.0 - 10.0 GHz 3.0 - 10.0 GHz 10.0 - 13.0 GHz	\pm (0.2 + 3% of Atten. Setting) Max \pm (0.4 + 3% of Atten. Setting) Max \pm (0.5 + 6% of Atten. Setting) Max \pm (0.6 + 6% of Atten. Setting) Max		dB dB dB dB	
Input Power for 0.1 dB Compression	1.0 - 13.0 GHz		22		dBm
Input Third Order Intercept Point REF State (Two-Tone Input Power= 0 dBm Each Tone) All Other States			46 32		dBm dBm
Switching Characteristics	DC - 13.0 GHz				
tRISE, tFALL (10/90% RF) tON/tOFF (50% CTL to 10/90% RF)			600 700		ns ns

HMC-C018* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

• HMC-C018 Data Sheet

TOOLS AND SIMULATIONS 🖳

• HMC-C018 S-Parameter

REFERENCE MATERIALS -

Technical Articles

 Hittite's Connectorized Modules Extend HMC-T2000 Synthesizer Performance

DESIGN RESOURCES 🖵

- HMC-C018 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC-C018 EngineerZone Discussions.

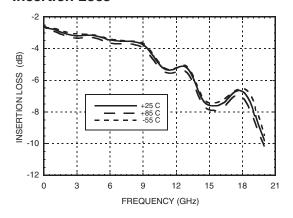
SAMPLE AND BUY 🖵

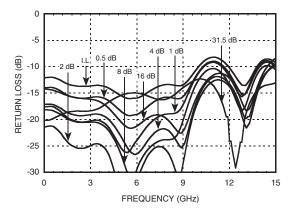
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

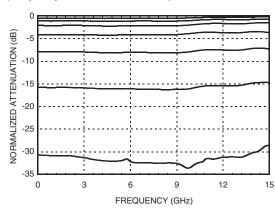
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

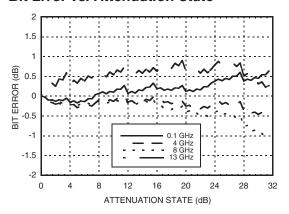

Submit feedback for this data sheet.


0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz

Insertion Loss

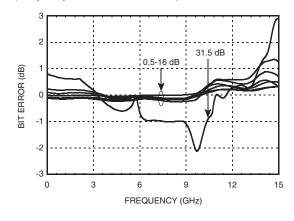

Return Loss RF1, RF2

(Only Major States are Shown)

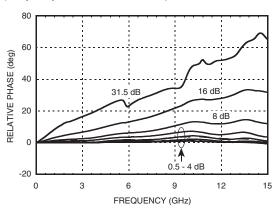


Normalized Attenuation

(Only Major States are Shown)



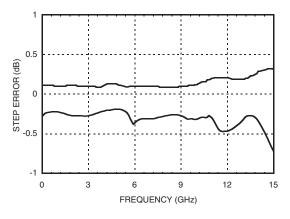
Bit Error vs. Attenuation State


Bit Error vs. Frequency

(Only Major States are Shown)

Relative Phase vs. Frequency

(Only Major States are Shown)



0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz

Worst Case Step Error Between Successive Attenuation States

Absolute Maximum Ratings

Digital Inputs (Reset, Shift Clock, Latch Enable & Serial Input)	-0.5V to +5.5V	
Bias Voltage (VDC)	-7.0 Vdc	
Storage Temperature	-65 to + 150 °C	
Operating Temperature	-55 to +85 °C	
RF Input Power (0.5 - 13.0 GHz)	+25 dBm	

Bias Voltage & Current

VDC Range= -5.0 Vdc ± 10%			
VDC	Idc (Typ.) (mA)	Idc (Max.) (mA)	
-5.0	5	9	

CMOS Control Voltages

State	Bias Condition
Low	0 to +1.3V
High	+3.5 to +5.0V

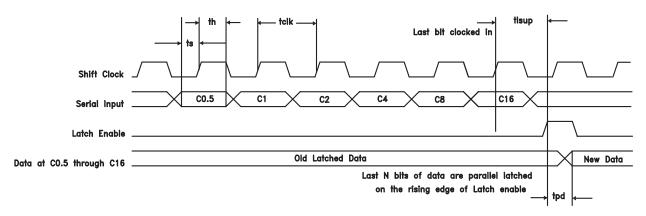
Serial Input Truth Table

Latch Enable	Shift Clock	Reset	Function
Х	Х	L	Shift register cleared
Х	1	Н	Shift register clocked
↑	х	Н	Contents of shift register transferred to Digital Attenuator

Truth Table

Serial Control Input						Attenuation
C0.5	C1	C2	C4	C8	C16	Settings RF1 - RF2
Н	Н	Н	Н	Н	Н	Reference I.L.
L	Н	Н	Н	Н	Н	0.5 dB
Н	L	Н	Н	Н	Н	1 dB
Н	Н	L	Н	Н	Н	2 dB
Н	Н	Н	L	Н	Н	4 dB
Н	Н	Н	Н	L	Н	8 dB
Н	Н	Н	Н	Н	L	16 dB
L	L	L	L	L	L	31.5 dB

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

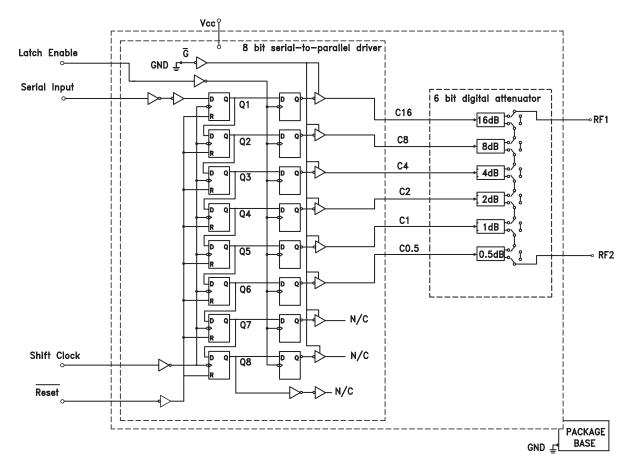

0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz

Timing

Parameter	Symbol	Min.	Max.	Units
Serial Input Setup Time	ts	20	-	ns
Hold time from Serial Input to Shift Clock	th	0	-	ns
Setup time from Shift Clock to Latch Enable	tlsup	40	-	ns
Propagation delay, Latch Enable to C0.5 through C8	tpd	-	30	ns
Setup time from Reset to Shift Clock	-	20	-	ns
Clock Frequency (1/tclk)	fclk	-	30	MHz

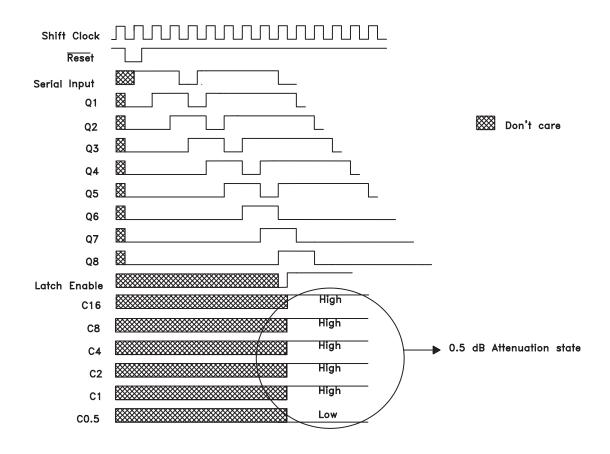
Timing Diagram

Serial data is shifted in on the rising edge of the Shift Clock, LSB first, and is latched on the rising edge of Latch Enable.



0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz

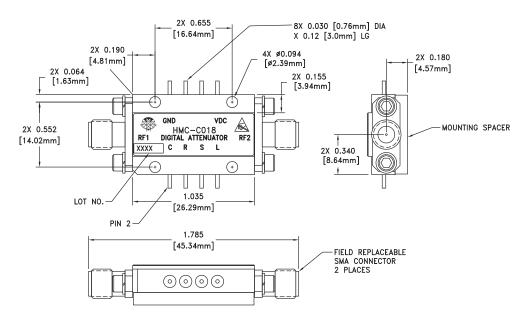
Logic / Functional Diagram

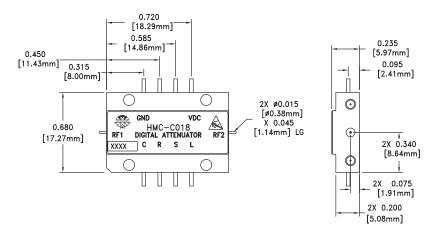


Programming Example to Select 0.5 dB Attenuation State

0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz

Pin Description


Pin Number	Function	Description	Interface Schematic
1	RF1	This pin is DC coupled and matched to 50 Ohms. Blocking capacitors are required if RF line potential is not equal to 0 Vdc.	RF10
2	С	Shift Clock	5V Zener
3	R	Reset	V1-V6 0
4	S	Serial Input	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5	L	Latch Enable	-4.4V(Internal)
6	RF2	This pin is DC coupled and matched to 50 Ohms. Blocking capacitors are required if RF line potential is not equal to 0 Vdc.	RF2○
7	Vdc	Supply voltage: -5 Vdc ±10%. (Internal diode for reverse bias protection)	Vdc O
8	GND	Power Supply Ground	GND =



0.5dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR MODULE, DC - 13 GHz

Outline Drawing

VIEW SHOWN WITH CONNECTORS REMOVED

Package Information

Package Type	C-6
Package Weight [1]	17.4 gms ^[2]
Spacer Weight	3 gms ^[2]

[1] Includes the connectors

[2] ±1 gms Tolerance

NOTES:

- 1. PACKAGE. LEADS. COVER MATERIAL: KOVAR™
- 2. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 75 MICROINCHES MIN
- 3. MOUNTING SPACER: NICKEL PLATED ALUMINUM
- 4. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 5. TOLERANCES ±0.010 [0.25] UNLESS OTHERWISE SPECIFIED
- 6. FIELD REPLACEABLE SMA CONNECTORS TENSOLITE 5602 - 5CCSF OR EQUIVALENT
- 7. TO MOUNT MODULE TO SYSTEM PLATFORM REPLACE 0 -80 HARDWARE WITH DESIRED MOUNTING SCREWS