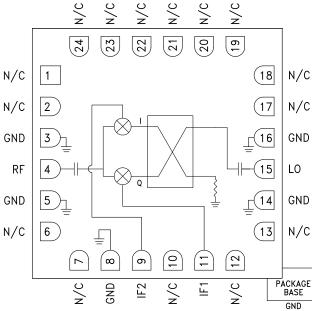


Typical Applications

The HMC1042LC4 is Ideal for:

- Point-to-Point Radio
- Point-to-Multi-Point Radio
- Test Equipment & Sensors
- Military End Use


HMC1042LC4

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Features

Wide IF Bandwidth: DC - 3.5 GHz Image Rejection: 30 dBc LO to RF Isolation: 40 dB High Input IP3: +22 dBm 24 Lead 4 x 4 mm SMT Package: 16 mm²

Functional Diagram

General Description

The HMC1042LC4 is a compact I/Q MMIC mixer in a leadless "Pb free" SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90° hybrid fabricated in a GaAs MESFET process. A low frequency quadrature hybrid was used to produce a 2000 MHz USB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixersand Single Sideband Upconverter assemblies. The HMC1042LC4 eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_{a} = +25 \text{ °C}$, IF= 2 GHz, USB, LO = +15 dBm^[1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF/LO	15 - 25		25 - 33.5			GHz	
Frequency Range, IF	DC - 3.5		DC - 3.5			GHz	
Conversion Loss (As IRM)		9	12		11	14	dB
Image Rejection	16	24		16	30		dB
LO to RF Isolation	35	40		33	43		dBc
LO to IF Isolation		35			45		dB
IP3 (Input)		20			22		dBm
Amplitude Balance ^{[2][3]}		±0.5			±0.5		dB
Phase Balance ^{[2] [3]}		±2.5			±2.5		Deg

[1] Unless otherwise noted, all measurements performed as downconverter.

[2] Data taken without external 90° hybrid.

[3] Data taken with IF = 100 MHz

HMC1042* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC1042LC4 Evaluation Board

DOCUMENTATION

Data Sheet

HMC1042 Data Sheet

REFERENCE MATERIALS

Quality Documentation

Semiconductor Qualification Test Report: MESFET-B (QTR: 2013-00245)

DESIGN RESOURCES

- HMC1042 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC1042 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

v04.0614

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz

Conversion Gain, USB vs. Temperature

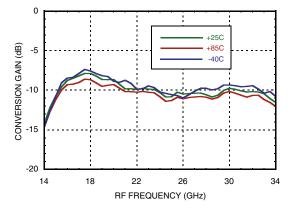
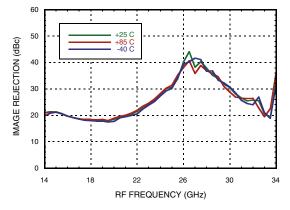
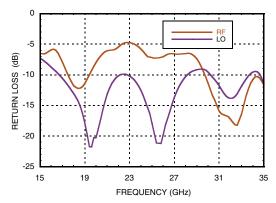
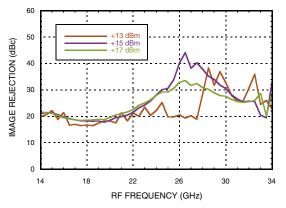
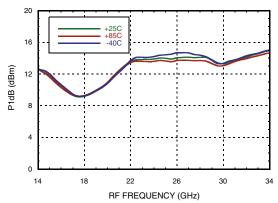




Image Rejection, USB vs. Temperature


Return Loss [1]

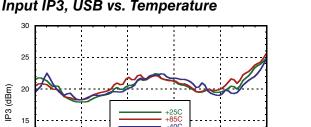

[1] Data taken without external 90° hybrid.

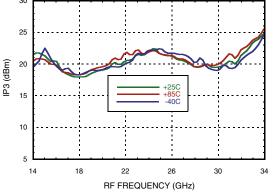
13 dBr CONVERSION GAIN (dB) dBm -10 -15 -20 34 14 18 22 26 30 **RF FREQUENCY (GHz)**

Image Rejection, USB vs. LO Drive

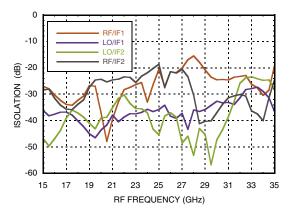
Input P1dB, USB vs. Temperature

Conversion Gain, USB vs. LO Drive

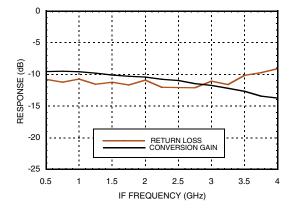

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v04.0614

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

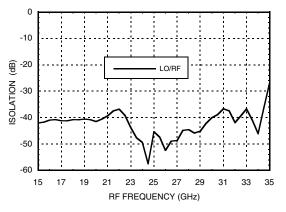


Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz

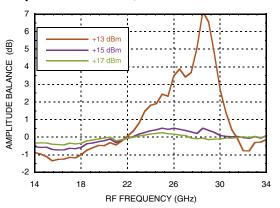

Input IP3, USB vs. Temperature

Isolation

IF Bandwidth [1]



[1] Data taken without external 90° hybrid. [2] Data taken with IF = 100 MHz.

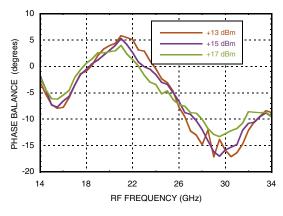

30 25 IP3 (dBm) 20 15 +13 dBm +15 dBm +17 dBm 10 5 18 22 26 30 34 14 RF FREQUENCY (GHz)

Input IP3, USB vs LO Drive

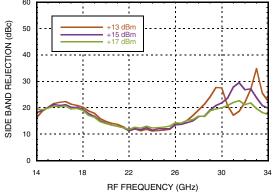
LO/RF Isolation

Amplitude Balance, USB vs. LO Drive [1] [2]

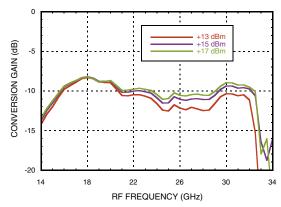
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v04.0614

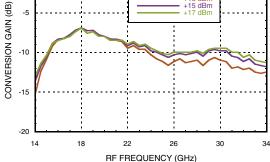
GaAs MMIC I/Q MIXER 15 - 33.5 GHz


BoHS

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz



Upconverter Performance Sideband Rejection, USB vs. LO Drive


Conversion Gain, LSB vs. LO Drive

[1] Data taken without external 90° hybrid. [2] Data taken with IF = 100 MHz.

Gain. USB vs. LO Drive +13 dBm +15 dBm +17 dBm -10

Upconverter Performance Conversion

Conversion Gain, LSB vs. Temperature

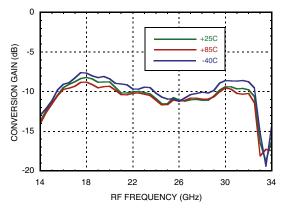
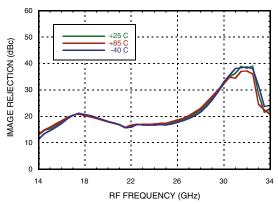
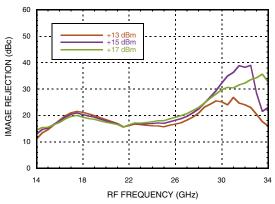



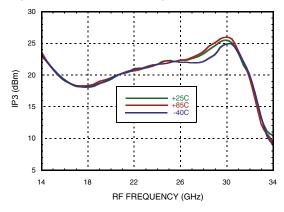
Image Rejection, LSB vs. Temperature

I/Q MIXER - SMT

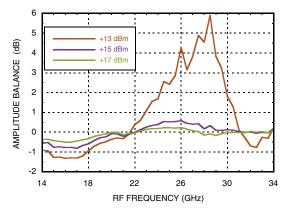
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v04.0614

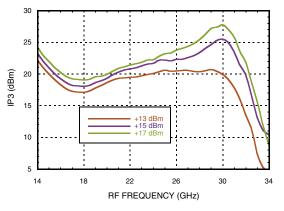
GaAs MMIC I/Q MIXER 15 - 33.5 GHz

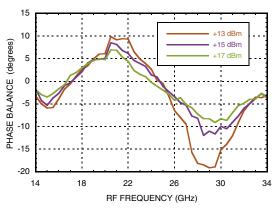

ROHS

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz


Image Rejection, LSB vs. LO Drive

Input IP3, LSB vs. Temperature


Amplitude Balance, LSB vs. LO Drive [1] [2]


Data taken without external 90° hybrid.
Data taken with IF = 100 MHz.

Input P1dB, LSB vs. Temperature 16 P1dB (dBm) 12 +25 C +85 C -40 C 8 4 0 34 14 18 22 26 30 RF FREQUENCY (GHz)

Input IP3, LSB vs LO Drive

Phase Balance, LSB vs. LO Drive [1] [2]

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 1000 MHz

Conversion Gain, USB vs. Temperature

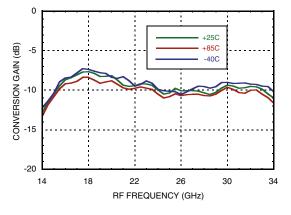
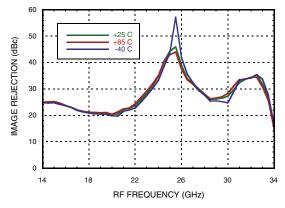
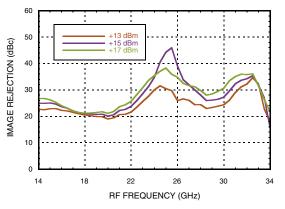
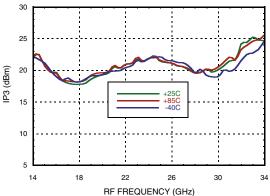




Image Rejection, USB vs. Temperature


Input P1dB, USB vs. Temperature

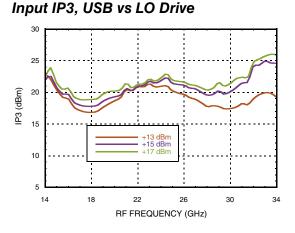

CONVERSION GAIN (dB) -10 -15 dBm dBm -17 dBn -20 18 22 26 30 34 14 RF FREQUENCY (GHz)

Conversion Gain, USB vs. LO Drive

Image Rejection, USB vs. LO Drive

Input IP3, USB vs. Temperature

I/Q MIXER - SMT


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Conversion Gain, LSB vs. Temperature

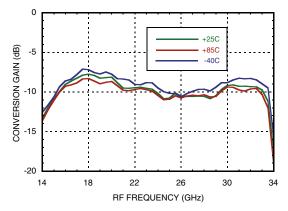
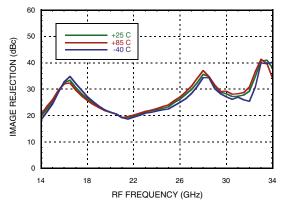



Image Rejection, LSB vs. Temperature

Conversion Gain, LSB vs. LO Drive

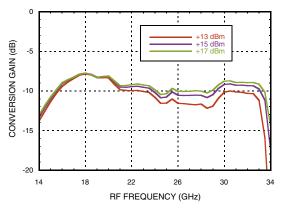
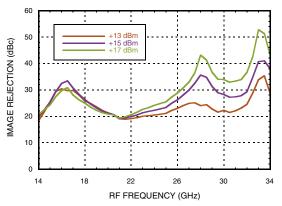
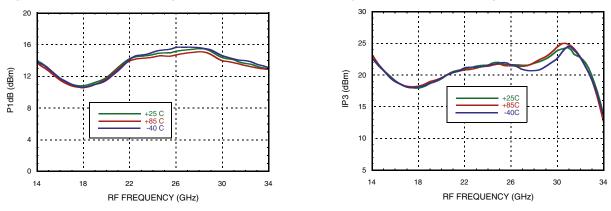



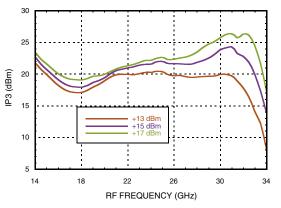
Image Rejection, LSB vs. LO Drive

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614


GaAs MMIC I/Q MIXER 15 - 33.5 GHz

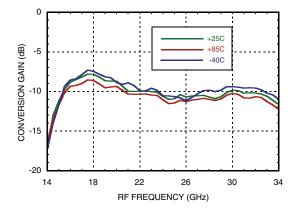
Input IP3, LSB vs. Temperature



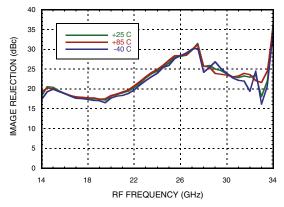
Data Taken As IRM with External IF 90° Hybrid, IF = 1000 MHz

Input P1dB, LSB vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v04.0614


GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2500 MHz

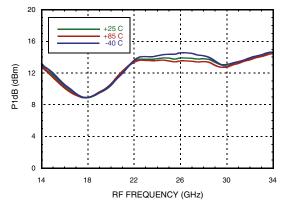

Conversion Gain, USB vs. Temperature

Image Rejection, USB vs. Temperature

Input P1dB, USB vs. Temperature

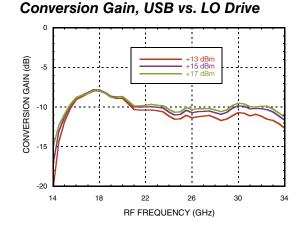
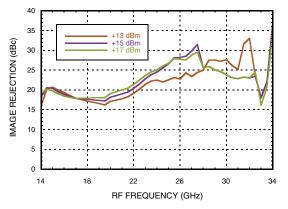
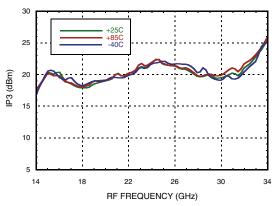
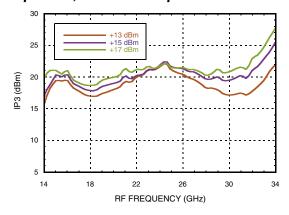




Image Rejection, USB vs. LO Drive

Input IP3, USB vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC1042LC4

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2500 MHz

Input IP3, USB vs. Temperature

Conversion Gain, LSB vs. Temperature

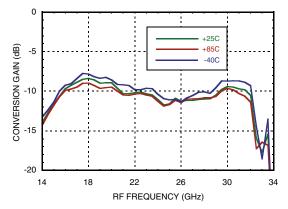
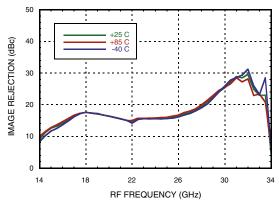



Image Rejection, LSB vs. Temperature

Conversion Gain, LSB vs. LO Drive

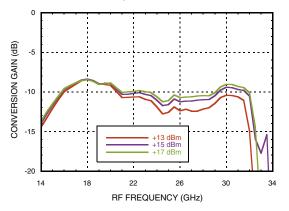
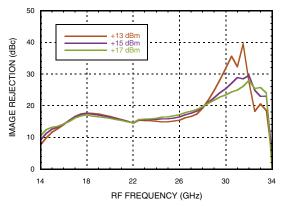
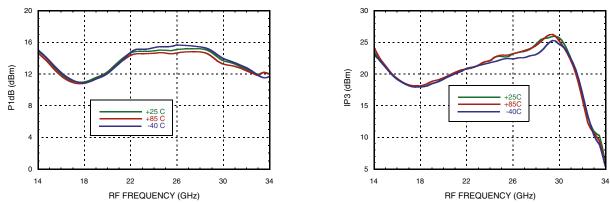
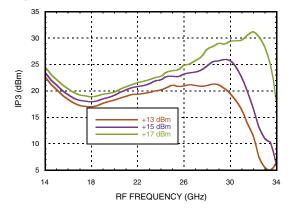



Image Rejection, LSB vs. LO Drive

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v04.0614

GaAs MMIC I/Q MIXER 15 - 33.5 GHz


Input IP3, LSB vs. Temperature

Data Taken As IRM with External IF 90° Hybrid, IF = 2500 MHz

Input P1dB, LSB vs. Temperature

Input IP3, LSB vs LO Drive

HMC1042LC4

Harmonics of LO

LO Freq. (GHz)	nLO Spur at RF Port				
	1	2	3		
13	43	40	45		
18	41	50	х		
23	44	44	х		
28	44	х	х		
33 36 X X					
LO = + 15 dBm Values in dBc below LO level measured at RF Port.					

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0		14	34	25	х
1	21	х	38	58	66
2	81	82	63	64	85
3	67	79	84	82	88
4	х	65	76	85	89

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

RF = 25 GHz @ -10 dBm

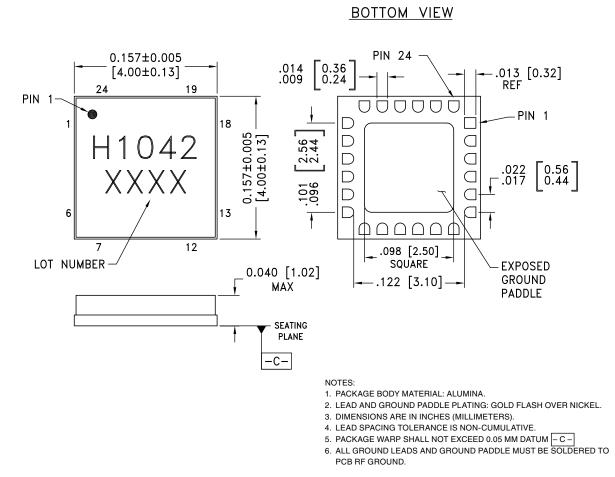
LO = 23 GHz @ +11 dBm

Data taken without IF hybrid

All values in dBc below IF power level

Absolute Maximum Ratings

RF / IF Input (LO = +18 dBm)	+18 dBm	
LO Drive	+20 dBm	
Channel Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 5.0 mW/°C above 85 °C)	328 mW	
Thermal Resistance (R _{TH}) (junction to package bottom)	198 °C/W	
Storage Temperature	-65 to +125 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	


15 - 33.5 GHz

GaAs MMIC I/Q MIXER

v04.0614

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC1042LC4	Alumina, White	Gold over Nickel	MSL3 ^[1]	H1042 XXXX

[1] Max peak reflow temperature of 260 °C [2] 4-Digit lot number XXXX

[2] 4-Digit lot number XXXX

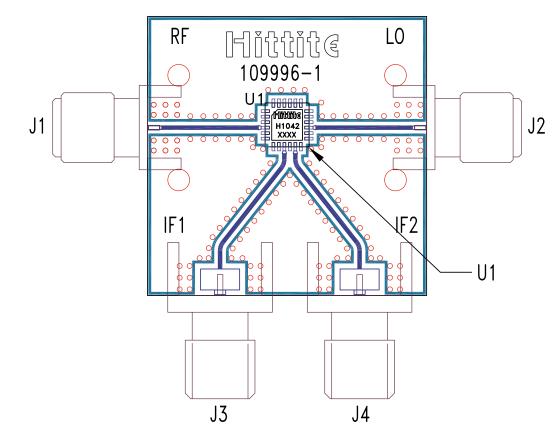
v04.0614

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

RoHS V

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 6, 7, 10, 12, 13, 17-24	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3, 5, 8, 14, 16	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	
4	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○
9	IF2	This pin is DC coupled. For application not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has	IF1,IF2 0
11	IF1	been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/sink more than 3 mA of current or product non-function and possible product failure will result.	
15	LO	This pin is AC coupled and matched to 50 Ohms from 15 to 33.5 GHz	


15 - 33.5 GHz

GaAs MMIC I/Q MIXER

v04.0614

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC1042LC4 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector, SRI	
J3 - J4	PCB Mount SMA Connector, Johnson	
U1	HMC1042LC4	
PCB [2]	109996-1 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC1042LC4

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

ROHS V

Notes

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.