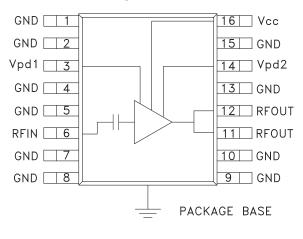


RoHS V

Typical Applications


Designer's Kin

The HMC450QS16G / HMC450QS16GE is ideal for power and driver amplifier applications:

v02.0406

- GSM, GPRS, & Edge
- CDMA & WCDMA
- Base Stations & Repeaters

Functional Diagram

GaAs InGaP HBT MMIC POWER AMPLIFIER, 0.8 - 1.0 GHz

Features

Gain: 26 dB 32% PAE @ 28.5 dBm Output Power +40 dBm Output IP3 Integrated Power Control (Vpd) Included in the HMC-DK002 Designer's Kit

General Description

The HMC450QS16G & HMC450QS16GE are high efficiency GaAs InGaP HBT Medium Power MMIC amplifiers operating between 800 and 1000 MHz. The amplifier is packaged in a low cost, surface mount 16 lead package and offers the same pinout and functionality as the higher band HMC413QS16G 1.6-2.3 GHz PA. With a minimum of external components, the amplifier provides 26 dB of gain, +40 dBm OIP3 and +28.5 dBm of saturated power from a +5V supply voltage. The integrated power control (Vpd) can be used for full power down or RF output power/current control. The combination of high gain and high output IP3 make the HMC450QS16G & HMC450QS16GE ideal linear drivers for Cellular, PCS & 3G applications.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vs = +5V, Vpd = +4V^[1]

Parameter	Min.	Тур.	Max.	Units
Frequency Range		0.8 - 1.0		
Gain	23	26		dB
Gain Variation Over Temperature		0.015	0.025	dB/°C
Input Return Loss		17		dB
Output Return Loss		13		dB
Output Power for 1 dB Compression (P1dB)	23	26		dBm
Saturated Output Power (Psat)		28.5		dBm
Output Third Order Intercept (IP3) [2]	37	40		dBm
Noise Figure		8		dB
Supply Current (Icq)		310		mA
Control Current (Ipd)		12		mA
Switching Speed tON, tOFF		10		ns

[1] Specifications and data reflect HMC450QS16G measured using the application circuit found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application.

[2] Two-tone output power of +15 dBm per tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

HMC450* PRODUCT PAGE QUICK LINKS

Last Content Update: 11/29/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC450QS16G Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC450 Data Sheet

TOOLS AND SIMULATIONS \Box

• HMC450 S-Parameter

REFERENCE MATERIALS

Product Selection Guide

• RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

- HMC Legacy PCN: QS##, QS##E and QS##G,QS##GE packages - Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated QSOP (QTR: 02015 REV: 11)
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

DESIGN RESOURCES

- HMC450 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC450 EngineerZone Discussions.

SAMPLE AND BUY

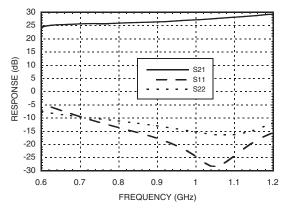
Visit the product page to see pricing options.

TECHNICAL SUPPORT

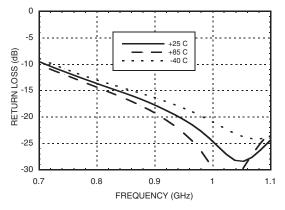
Submit a technical question or find your regional support number.

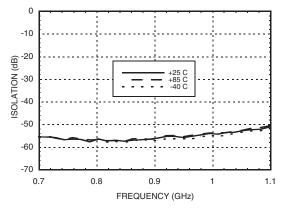
DOCUMENT FEEDBACK

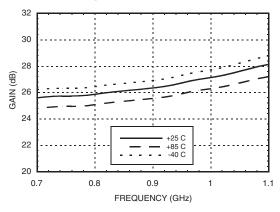
Submit feedback for this data sheet.

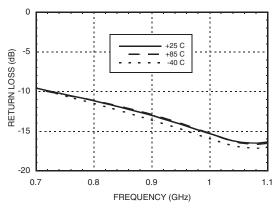

POWER AMPLIFIER, 0.8 - 1.0 GHz

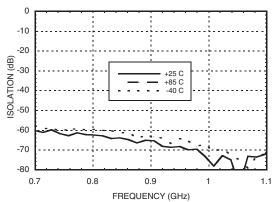
GaAs InGaP HBT MMIC


v02.0406


Broadband Gain & Return Loss


Input Return Loss vs. Temperature

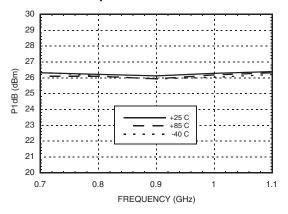

Reverse Isolation vs. Temperature


Gain vs. Temperature

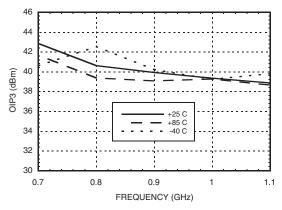
Output Return Loss vs. Temperature

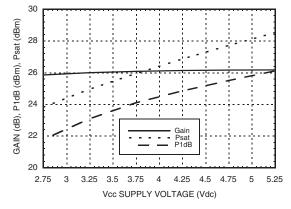
Power Down Isolation vs. Temperature

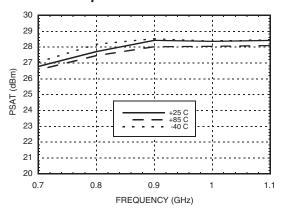
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

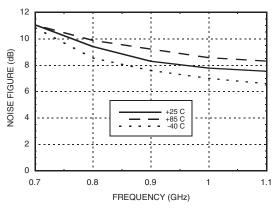

POWER AMPLIFIER, 0.8 - 1.0 GHz

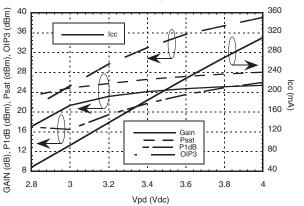
GaAs InGaP HBT MMIC


v02.0406


P1dB vs. Temperature

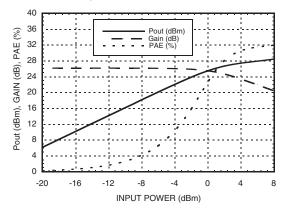

Output IP3 vs. Temperature

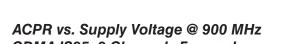

Gain and Power vs. Supply Voltage @ 900 MHz, Vpd= 4V


Psat vs. Temperature

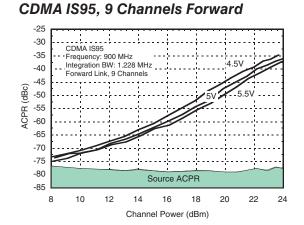
Noise Figure vs. Temperature

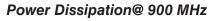
Gain, Power, OIP3 and Supply Current vs. Power Down Voltage @ 900 MHz

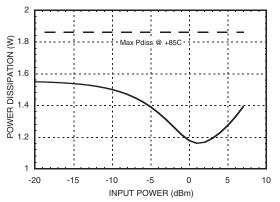

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



v02.0406


Power Compression @ 900 MHz





POWER AMPLIFIER, 0.8 - 1.0 GHz

GaAs InGaP HBT MMIC

11

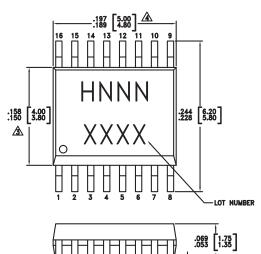
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Absolute Maximum Ratings

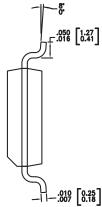
	-
Collector Bias Voltage (Vcc)	+5.5 Vdc
Control Voltage (Vpd1, Vpd2)	+5Vdc
RF Input Power (RFIN)(Vs = +5Vdc, VPD = +4.0 Vdc)	+10 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 28 mW/°C above 85 °C)	1.86 W
Thermal Resistance (junction to ground paddle)	35 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

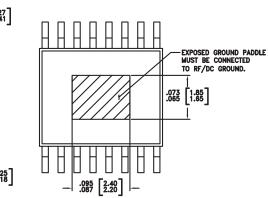
v02.0406

GaAs InGaP HBT MMIC POWER AMPLIFIER, 0.8 - 1.0 GHz


Typical Supply Current vs. Supply Voltage

Vs (V)	lcq (mA)
4.75	300
5.0	310
5.25	325


Note: Amplifier will operate over full voltage range shown above



Outline Drawing

.005 0.13

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS]

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

.012 0.30 TYP

.025 [0.63]

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC450QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H450 XXXX
HMC450QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H450</u> XXXX

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

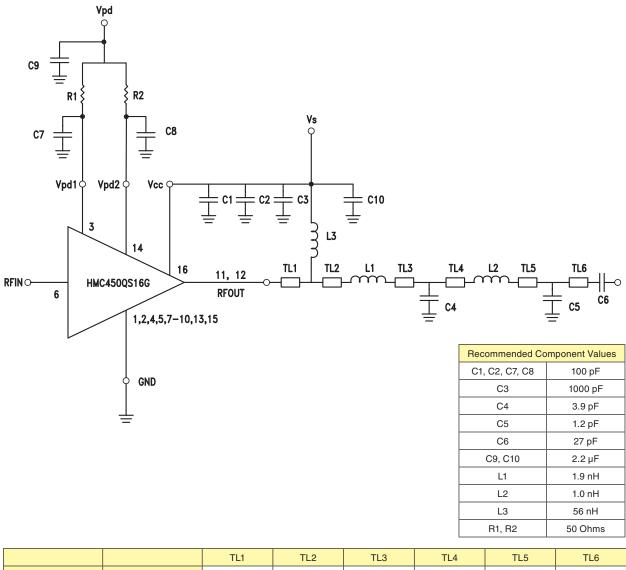
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0406

GaAs InGaP HBT MMIC POWER AMPLIFIER, 0.8 - 1.0 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 5, 7, 8, 9, 10, 13, 15	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	
3, 14	Vpd1, Vpd2	Power Control Pin. For maximum power, this pin should be connected to 4.0V. For 5V operation, a dropping resistor is required. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	VPD1 VPD2
6	RFIN	This pin is AC coupled and matched to 50 Ohms from 0.8 to 1.0 GHz.	
11, 12	RFOUT	RF output and bias for the output stage.	
16	Vcc	Power supply voltage for the first amplifier stage. An external bypass capacitor of 330 pF is required as shown in the application schematic.	o vcc



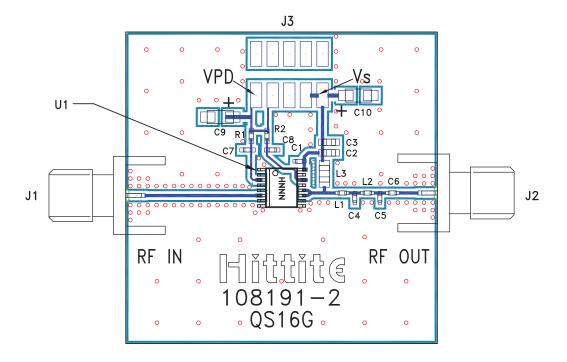
v02.0406

GaAs InGaP HBT MMIC POWER AMPLIFIER, 0.8 - 1.0 GHz

Application Circuit

		TL1	TL2	TL3	TL4	TL5	TL6
	Impedance	50 Ohm					
Physical	Length	0.08"	0.05"	0.02"	0.02"	0.02"	0.02"
Electrical	Length	4°	2.5°	1.02°	1.02°	1.02°	1.02°
PCB Material: 10 mil Rogers 4350 Er = 3.48							

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v02.0406

GaAs InGaP HBT MMIC POWER AMPLIFIER, 0.8 - 1.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108349^[1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1, C7, C8	100 pF Capacitor, 0402 Pkg.
C2	100 pF Capacitor, 0603 Pkg.
C3	1000 pF Capacitor, 0603 Pkg.
C4	3.9 pF Capacitor, 0402 Pkg.
C5	1.2 pF Capacitor, 0402 Pkg.
C6	27 pF Capacitor, 0402 Pkg.
C9, C10	2.2 uF Capacitor, Tantalum
L1	1.9 nH Inductor 0402 Pkg.
L2	1.0 nH Inductor, 0402 Pkg.
L3	56nH Inductor, 0805 Pkg.
R1, R2	50 Ohms Resistor, 0402 Pkg.
U1	HMC450QS16G / HMC450QS16GE Power Amp.
PCB [2]	108191 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.