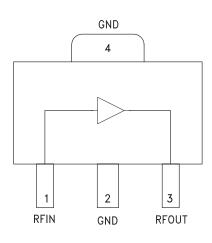


ROHS EARTH FRIENDLY EARTH FRIENDLY


Typical Applications

The HMC453ST89 / HMC453ST89E is ideal for applications requiring a high dynamic range amplifier:

v02.0710

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- CATV/Cable Modem
- Fixed Wireless

Functional Diagram

HMC453ST89 / 453ST89E

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Features

Output IP3: +49 dBm 20.5 dB Gain @ 400 MHz 7.5 dB Gain @ 2100 MHz 41% PAE @ +32.5 dBm Pout +26 dBm CDMA2000 Channel Power @ -45 dBc ACP Included in the HMC-DK002 Designer's Kit

General Description

The HMC453ST89 & HMC453ST89E are high dynamic range GaAs InGaP HBT 1.6 Watt MMIC power amplifiers operating from 0.4 to 2.2 GHz and packaged in industry standard SOT89 packages. Utilizing a minimum number of external components and a single +5V supply, the amplifier output IP3 can be optimized to +47 dBm at 0.4 GHz or +49 dBm at 2.1 GHz. The high output IP3 and PAE make the HMC453ST89 & HMC453ST89E ideal power amplifiers for Cellular/ PCS/3G and Fixed Wireless applications.

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		400 - 41	0	4	450 - 496	;	8	310 - 960)	17	710 - 199	0	20	010 - 217	70	MHz
Gain	18	20.5		16.5	19		12	14.5		6	8.5		6	7.5		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02	dB / °C
Input Return Loss		20			14			20			15			13		dB
Output Return Loss		12			12			13			15			18		dB
Output Power for 1dB Compression (P1dB)	28.5	31.5		29	32		28.5	31.5		29	32		29.5	32.5		dBm
Saturated Output Power (Psat)		32			32.25			31.75			32.5			32.75		dBm
Output Third Order Intercept (IP3) [2]	44	47		45	48		44	47		46	49		46	49		dBm
Noise Figure		9			9			6.5			7			6.5		dB
Supply Current (Icq)		725			725			725			725			725		mA

[1] Specifications and data reflect HMC453ST89 measured using the respective application circuits for each designated frequency band found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application.

[2] Two-tone input power of 0 dBm per tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Electrical Specifications, $T_A = +25^{\circ}C$, $Vs = +5V^{[1]}$

HMC453ST89* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• HMC453ST89 Evaluation Board.

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC453ST89 Data Sheet

TOOLS AND SIMULATIONS \square

• HMC453ST89 S-Parameters

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: 3 Lead Plastic SOT89 Package (QTR: 10002 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

DESIGN RESOURCES

- HMC453ST89 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

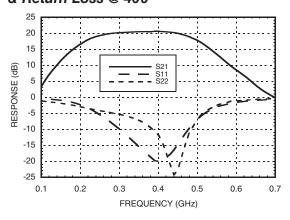
View all HMC453ST89 EngineerZone Discussions.

SAMPLE AND BUY

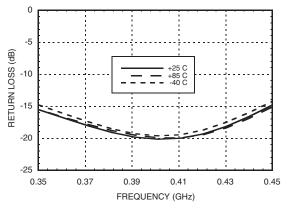
Visit the product page to see pricing options.

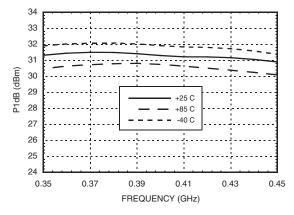
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

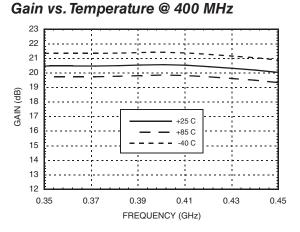

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

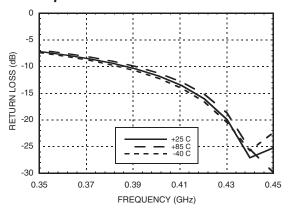



Broadband Gain & Return Loss @ 400

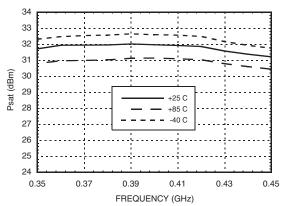
Input Return Loss vs. Temperature @ 400 MHz



P1dB vs. Temperature @ 400 MHz



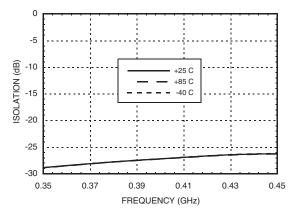
HMC453ST89 / 453ST89E

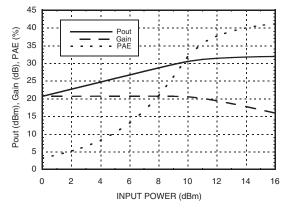

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Output Return Loss vs. Temperature @ 400 MHz

Psat vs. Temperature @ 400 MHz

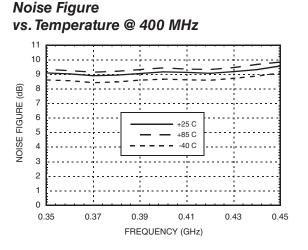
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



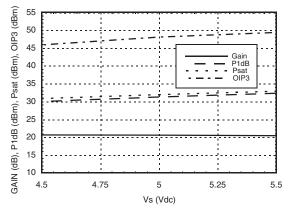

52 50 48 46 44 OIP3 (dBm) 42 +25 C 40 +85 C -40 C 38 36 34 32 30 0.35 0.37 0.39 0.41 0.43 0.45 FREQUENCY (GHz)

Output IP3 vs. Temperature @ 400 MHz

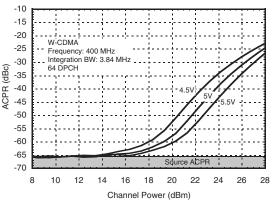
Reverse Isolation vs. Temperature @ 400 MHz



Power Compression @ 400 MHz

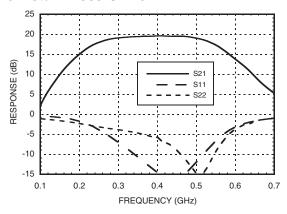


HMC453ST89 / 453ST89E

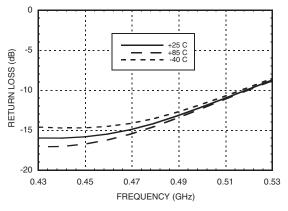

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

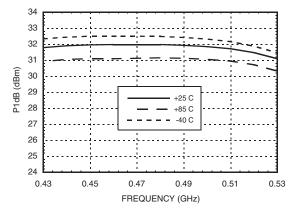
Gain, Power & IP3 vs. Supply Voltage @ 400 MHz

ACPR vs. Supply Voltage @ 400 MHz W-CDMA, 64 DPCH

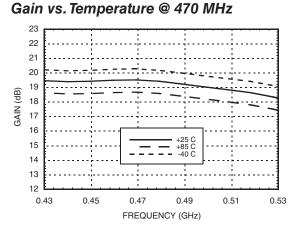


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

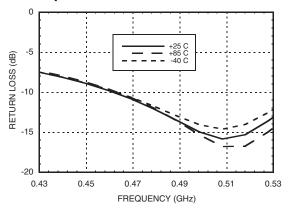



Broadband Gain & Return Loss @ 470 MHz

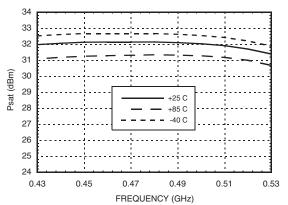
Input Return Loss vs. Temperature @ 470 MHz



P1dB vs. Temperature @ 470 MHz

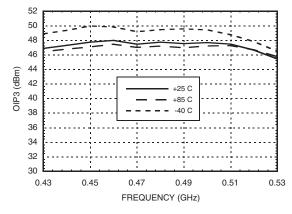


HMC453ST89 / 453ST89E

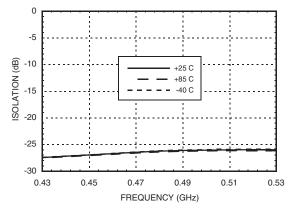

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

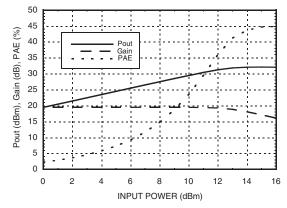
Output Return Loss vs. Temperature @ 470 MHz

Psat vs. Temperature @ 470 MHz

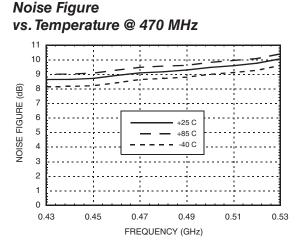


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

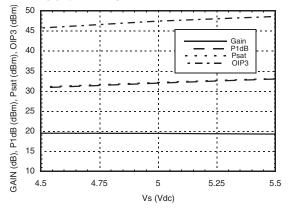



Output IP3 vs. Temperature @ 470 MHz

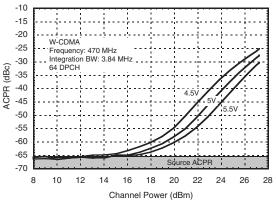
Reverse Isolation vs. Temperature @ 470 MHz



Power Compression @ 470 MHz

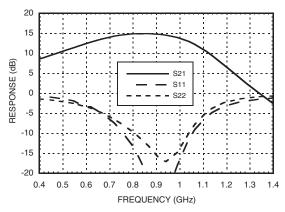


HMC453ST89 / 453ST89E

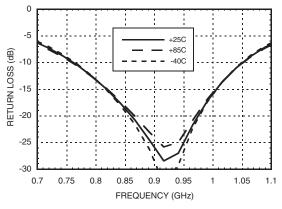

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

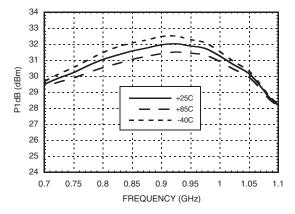
Gain, Power & IP3 vs. Supply Voltage @ 470 MHz

ACPR vs. Supply Voltage @ 470 MHz W-CDMA, 64 DPCH

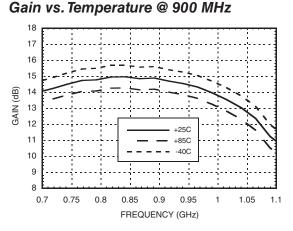


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

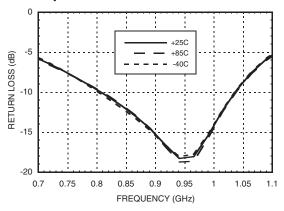



Broadband Gain & Return Loss @ 900 MHz

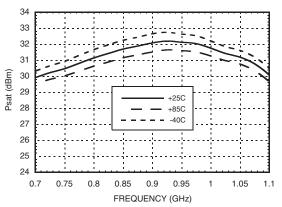
Input Return Loss vs. Temperature @ 900 MHz



P1dB vs. Temperature @ 900 MHz

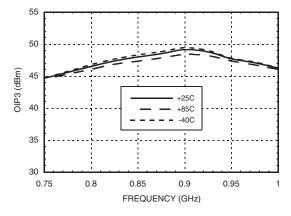


HMC453ST89 / 453ST89E

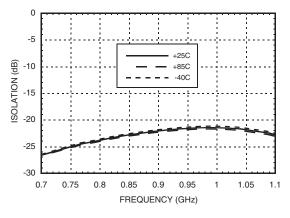

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

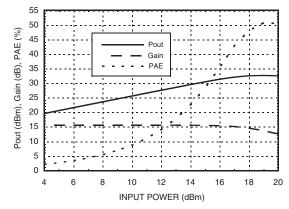
Output Return Loss vs. Temperature @ 900 MHz

Psat vs. Temperature @ 900 MHz

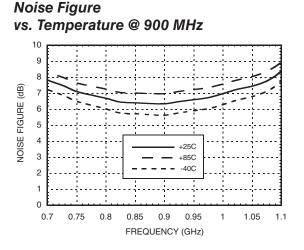


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

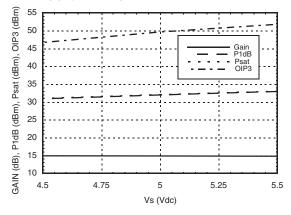



Output IP3 vs. Temperature @ 900 MHz

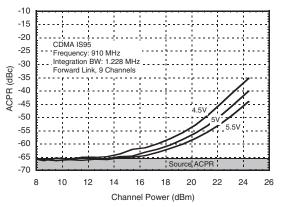
Reverse Isolation vs. Temperature @ 900 MHz



Power Compression @ 900 MHz

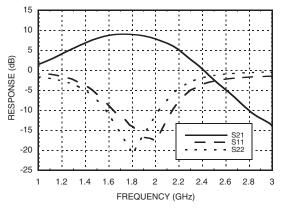


HMC453ST89 / 453ST89E

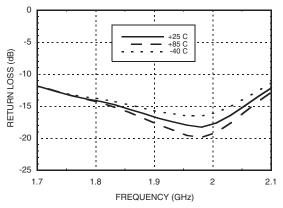

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

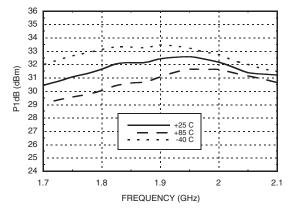
Gain, Power & IP3 vs. Supply Voltage @ 900 MHz

ACPR vs. Supply Voltage @ 910 MHz CDMA IS95, 9 Channels Forward

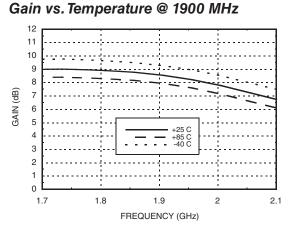


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

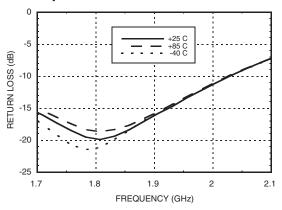



Broadband Gain & Return Loss @ 1900 MHz

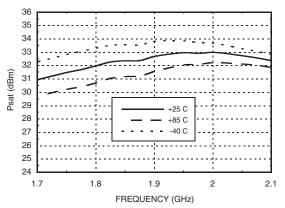
Input Return Loss vs. Temperature @ 1900 MHz



P1dB vs. Temperature @ 1900 MHz

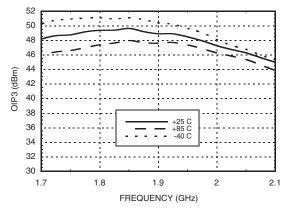


HMC453ST89 / 453ST89E

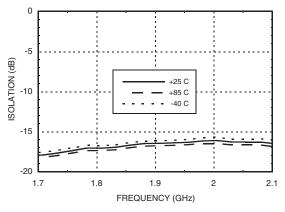

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

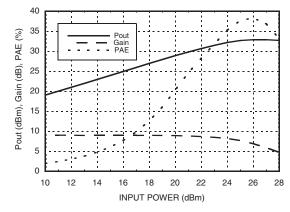
Output Return Loss vs. Temperature @ 1900 MHz

Psat vs. Temperature @ 1900 MHz

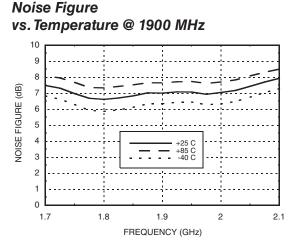

AMPLIFIERS - LINEAR & POWER - SM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

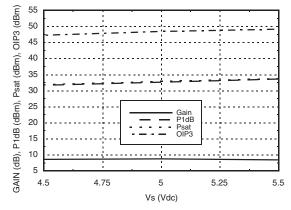



Output IP3 vs. Temperature @ 1900 MHz

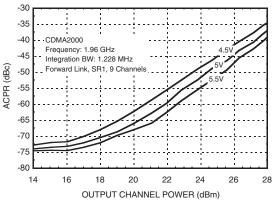
Reverse Isolation vs. Temperature @ 1900 MHz



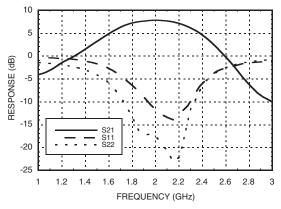
Power Compression @ 1900 MHz



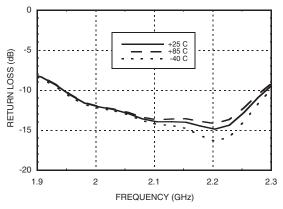
HMC453ST89 / 453ST89E

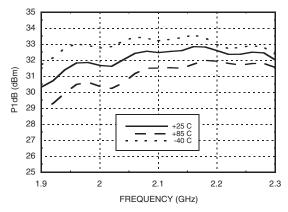

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Gain, Power & IP3 vs. Supply Voltage @ 1900 MHz

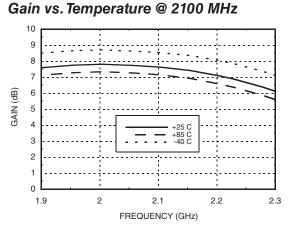


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

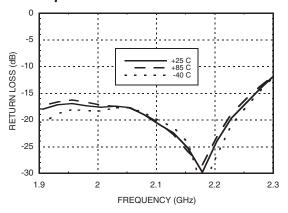



Broadband Gain & Return Loss @ 2100 MHz

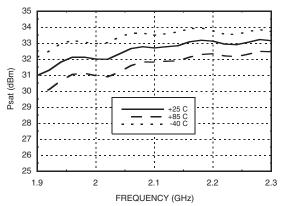
Input Return Loss vs. Temperature @ 2100 MHz



P1dB vs. Temperature @ 2100 MHz



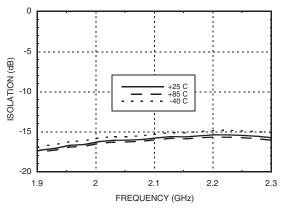
HMC453ST89 / 453ST89E


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Output Return Loss vs. Temperature @ 2100 MHz

Psat vs. Temperature @ 2100 MHz

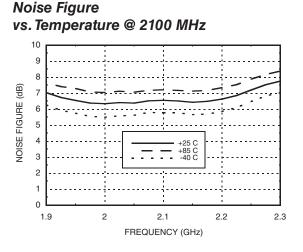
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



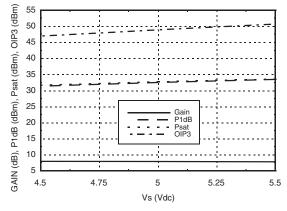
52 50 48 46 44 OIP3 (dBm) 42 +25 C +85 C -40 C 40 38 36 34 32 30 1.9 2 2.1 2.2 2.3 FREQUENCY (GHz)

Output IP3 vs. Temperature @ 2100 MHz

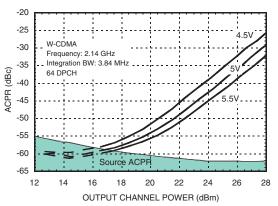
Reverse Isolation vs. Temperature @ 2100 MHz



Power Compressions @ 2100 MHz

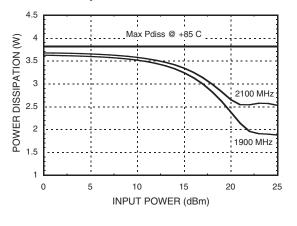


HMC453ST89 / 453ST89E

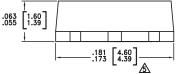

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

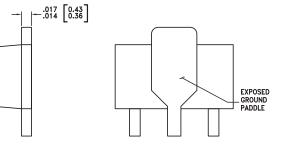
Gain, Power & IP3 vs. Supply Voltage @ 2100 MHz

ACPR vs. Supply Voltage @ 2140 MHz W-CDMA, 64 DPCH



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




Power Dissipation

Outline Drawing

$:\frac{164}{1.52} \begin{bmatrix} 4.17\\ 1.19\\ 3.86 \end{bmatrix} \xrightarrow{4} \\ \underbrace{HNNN}_{XXXX} \xrightarrow{1000} \begin{bmatrix} 2.59\\ 2.29 \end{bmatrix}} \xrightarrow{1000} \\ \underbrace{1020}_{2.29} \begin{bmatrix} 2.59\\ 0.74 \end{bmatrix} \xrightarrow{1} \\ \underbrace{1020}_{1.19}_{1.19} \\ \underbrace{1020}_{1.19}_{1.19$

NOTES:

1. PACKAGE BODY MATERIAL:

MOLDING COMPOUND MP-180S OR EQUIVALENT.

2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.

3. LEAD PLATING: 100% MATTE TIN.

4. DIMENSIONS ARE IN INCHES [MILLIMETERS]

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE. 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC453ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H453 XXXX
HMC453ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H453</u> XXXX

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Absolute Maximum Ratings

	-
Collector Bias Voltage (Vcc)	+6.0 Vdc
RF Input Power (RFIN)(Vs +5Vdc)	+32 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 58.5 mW/°C above 85 °C)	3.8 W
Thermal Resistance (junction to ground paddle)	17.1 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

HMC453ST89 / 453ST89E

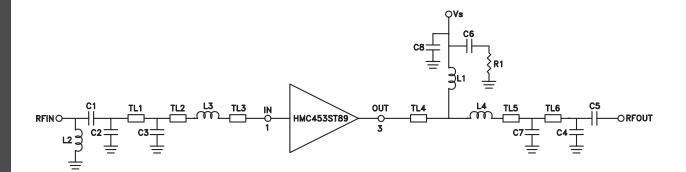
InGaP HBT 1.6 WATT POWER

AMPLIFIER, 0.4 - 2.2 GHz

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

HMC453ST89 / 453ST89E

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz



Pin Descriptions

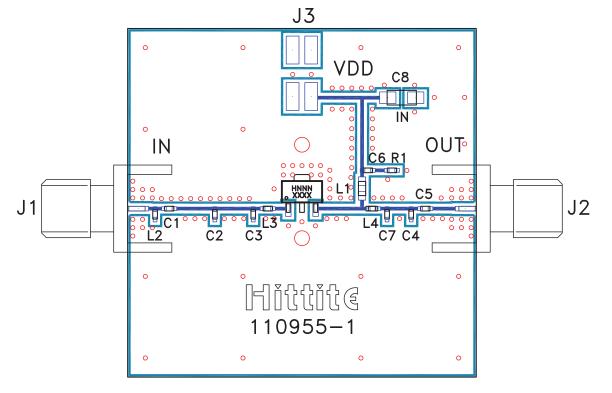
Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. Off chip matching components are required. See Application Circuit herein.	RFINO
3	RFOUT	RF output and DC Bias input for the amplifier. Off chip matching components are required. See Application Circuit herein.	
2, 4	GND	These pins & package bottom must be connected to RF/DC ground.	

400 MHz Application Circuit

This circuit was used to specify the performance for 400-410 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	TL3	TL4	TL5	TL6
Impedance	50 Ohm	50 Ohm				
Physical Length	0.16"	0.04"	0.06"	0.21"	0.04"	0.10"
Electrical Length	4°	1°	1°	5°	1 °	2°
PCB Material: 10 mil Rogers 4350, Er = 3.48						

Recommended C	component Values
C1, C4	10 pF
C2, C3	8.2 pF
C5	39 pF
C6	100 pF
C7	12 pF
C8	2.2 μF
L1	47 nH
L2	40 nH
L3	4.3 nH
L4	5.1 nH
R1	5.1 Ohm


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

400 MHz Evaluation PCB

List of Materials for Evaluation PCB 110957-400 [1]

v02.0710

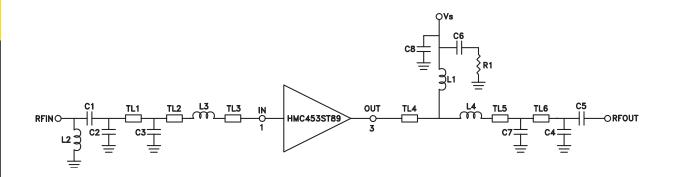
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1, C4	10 pF Capacitor, 0402 Pkg.
C2, C3	8.2 pF Capacitor, 0402 Pkg.
C5	39 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	12 pF Capacitor, 0402 Pkg.
C8	2.2 µF Capacitor, Tantalum
L1	47 nH Inductor, 0603 Pkg.
L2	40 nH Inductor, 0402 Pkg.
L3	4.3 nH Inductor, 0402 Pkg.
L4	5.1 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453ST89 / HMC453ST89E Linear Amp
PCB ^[2]	110955 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.


HMC453ST89 / 453ST89E

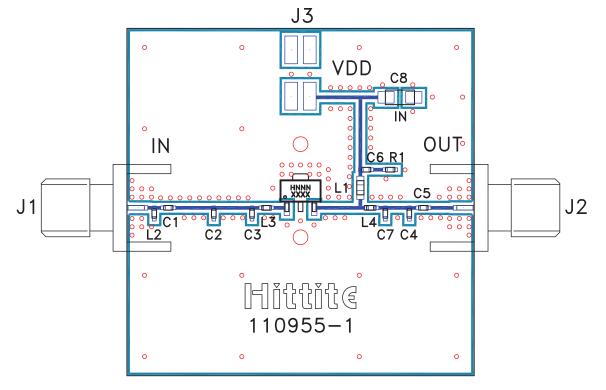
InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

470 MHz Application Circuit

This circuit was used to specify the performance for 450-496 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	TL3	TL4	TL5	TL6
Impedance	50 Ohm					
Physical Length	0.16"	0.04"	0.06"	0.21"	0.04"	0.10"
Electrical Length 4° 1° 2° 6° 1° 3°						
PCB Material: 10 mil Bogers 4350 Fr = 3 48						

Recommended C	Recommended Component Values				
C1	10 pF				
C2, C3	6.8 pF				
C4	12 pF				
C5	39 pF				
C6	100 pF				
C7	5.6 pF				
C8	2.2 µF				
L1	47 nH				
L2	40 nH				
L3	4.7 nH				
L4	2.4 nH				
R1	5.1 Ohm				


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

470 MHz Evaluation PCB

List of Materials for Evaluation PCB 110961-470 [1]

v02.0710

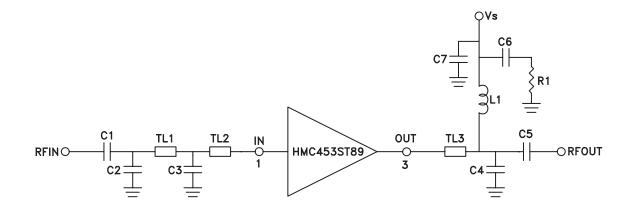
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	10 pF Capacitor, 0402 Pkg.
C2, C3	6.8 pF Capacitor, 0402 Pkg.
C4	12 pF Capacitor, 0402 Pkg.
C5	39 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	5.6 pF Capacitor, 0402 Pkg.
C8	2.2 µF Capacitor, Tantalum
L1	47 nH Inductor, 0603 Pkg.
L2	40 nH Inductor, 0402 Pkg.
L3	4.7 nH Inductor, 0402 Pkg.
L4	2.4 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453ST89 / HMC453ST89E Linear Amp
PCB [2]	110955 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

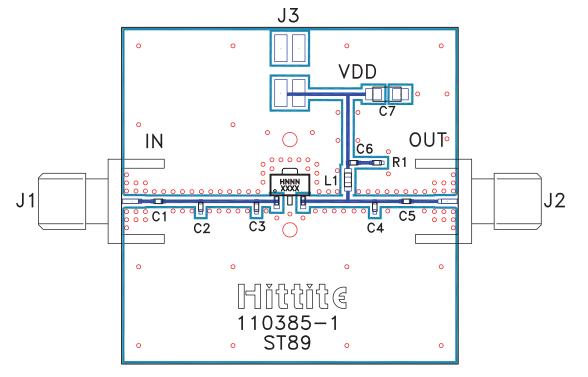

HMC453ST89 / 453ST89E

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

900 MHz Application Circuit

This circuit was used to specify the performance for 810-960 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	TL3	
Impedance	50 Ohm	50 Ohm	50 Ohm	
Physical Length	0.25"	0.08"	0.31"	
Electrical Length 13° 4° 16°				
PCB Material: 10 mil Rogers 4350. Er = 3.48				


Recommended C	Recommended Component Values				
C1	5 pF				
C2	3.3 pF				
C3	2.7 pF				
C4	8.2 pF				
C5	12 pF				
C6	100 pF				
C7	2.2 μF				
L1	15 nH				
R1	5.1 Ohm				

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

900 MHz Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 110387-900 [1]

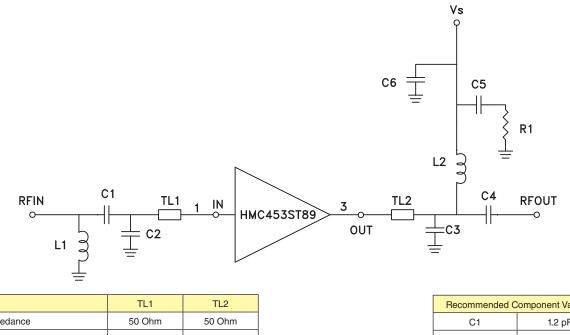
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	5 pF Capacitor, 0402 Pkg.
C2	3.3 pF Capacitor, 0402 Pkg.
C3	2.7 pF Capacitor, 0402 Pkg.
C4	8.2 pF Capacitor, 0402 Pkg.
C5	12 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	2.2 µF Capacitor, Tantalum
L1	15 nH Inductor, 0603 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453ST89 / HMC453ST89E Linear Amp
PCB [2]	110385 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC453ST89 / 453ST89E

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

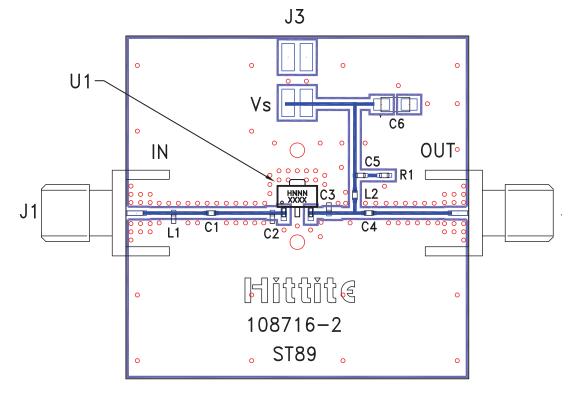
1900 MHz Application Circuit

This circuit was used to specify the performance for 1710-1990 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	IL1	IL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.07"
Electrical Length	4°	8°
PCB Material: 10 mil Rogers 4350, Er = 3.48		

Recommended Component Values	
C1	1.2 pF
C2	1.5 pF
C3	3.9 pF
C4	15 pF
C5	100 pF
C6	2.2 μF
L1	20 nH
L2	12 nH
R1	5.1 Ohm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

1900 MHz Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 108718-1900 [1]

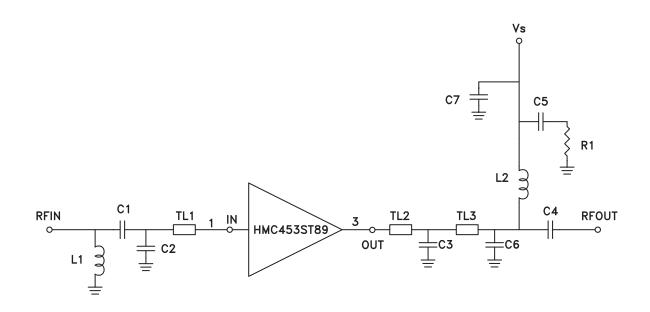
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	1.2 pF Capacitor, 0402 Pkg.
C2	1.5 pF Capacitor, 0402 Pkg.
C3	3.9 pF Capacitor, 0402 Pkg.
C4	15 pF Capacitor, 0402 Pkg.
C5	100 pF Capacitor, 0402 Pkg.
C6	2.2 µF Capacitor, Tantalum
L1	20 nH Inductor, 0402 Pkg.
L2	12 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453ST89 / HMC453ST89E Linear Amp
PCB [2]	108716 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC453ST89 / 453ST89E

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

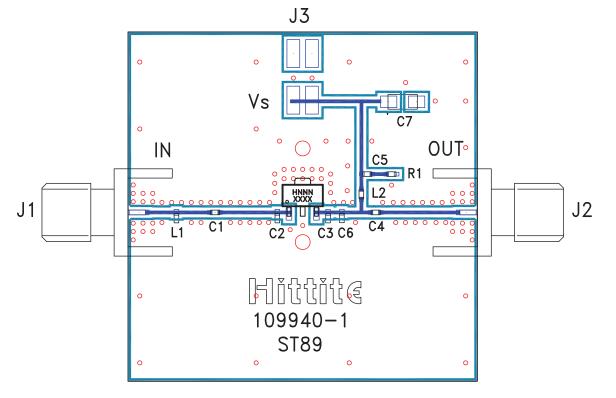
2100 MHz Application Circuit

This circuit was used to specify the performance for 2010-2170 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 and C3 should be placed as close to pins as possible.

	TL1	TL2	TL3
Impedance	50 Ohm	50 Ohm	50 Ohm
Physical Length	0.04"	0.04"	0.04"
Electrical Length 5° 5° 5°			
PCB Material: 10 mil Rogers 4350, Er = 3.48			

Recommended Component Values	
C1	0.8 pF
C2	1 pF
C3	3.3 pF
C4	15 pF
C5	100 pF
C6	0.5 pF
C7	2.2 μF
L1	20 nH
L2	12 nH
R1	5.1 Ohm


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

2100 MHz Evaluation PCB

List of Materials for Evaluation PCB 109942-2100 [1]

v02.0710

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	0.8 pF Capacitor, 0402 Pkg.
C2	1 pF Capacitor, 0402 Pkg.
C3	3.3 pF Capacitor, 0402 Pkg.
C4	15 pF Capacitor, 0402 Pkg.
C5	100 pF Capacitor, 0402 Pkg.
C6	0.5 pF Capacitor, 0402 Pkg.
C7	2.2 µF Capacitor, Tantalum
L1	20 nH Inductor, 0402 Pkg.
L2	12 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453ST89 / HMC453ST89E Linear Amp
PCB ^[2]	109940 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.