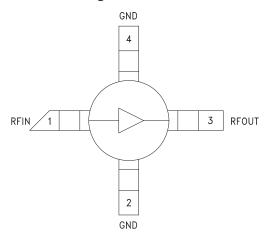


HMC478MP86 / 478MP86E

ROHSV EARTH FRIENDLY


Typical Applications

The HMC478MP86 / HMC478MP86E is an ideal RF/ IF gain block & LO or PA driver:

v03.0810

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

Functional Diagram

SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Features

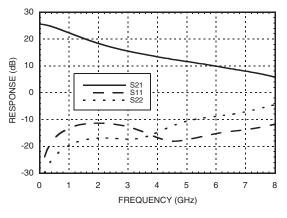
P1dB Output Power: +18 dBm Gain: 22 dB Output IP3: +32 dBm Cascadable 50 Ohm I/Os Single Supply: +5V to +8V Robust 1,000V ESD, Class 1C Included in the HMC-DK001 Designer's Kit

General Description

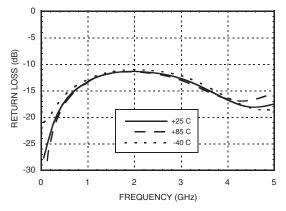
The HMC478MP86 & HMC478MP86E are SiGe Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifiers covering DC to 4 GHz. This Micro-P packaged amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +20 dBm output power. The HMC478MP86(E) offers 22 dB of gain with a +32 dBm output IP3 at 850 MHz while requiring only 62 mA from a single positive supply. The Darlington feedback pair used results in reduced sensitivity to normal process variations and excellent gain stability over temperature while requiring a minimal number of external bias components.

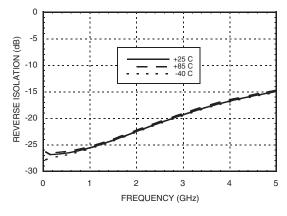
Electrical Specifications, Vs= 5V, Rbias= 18 Ohm, $T_A = +25^{\circ}$ C

Parameter		Min.	Тур.	Max.	Units
Gain	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz	19 15 13 11	22 18 16 14		dB dB dB dB
Gain Variation Over Temperature	DC - 4 GHz		0.015	0.02	dB/ °C
Input Return Loss	DC - 1.0 GHz 1.0 - 3.0 GHz 3.0 - 4.0 GHz		15 12 13		dB dB dB
Output Return Loss	DC - 1.0 GHz 1.0 - 4.0 GHz		20 17		dB dB
Reverse Isolation	DC - 4 GHz		20		dB
Output Power for 1 dB Compression (P1dB)	0.5 - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz	15 13 11 9	18 16 14 12		dBm dBm dBm dBm
Output Third Order Intercept (IP3) (Pout= 0 dBm per tone, 1 MHz spacing)	0.5 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz		32 29 25		dBm dBm dBm
Noise Figure	DC - 3.0 GHz 3.0 - 4.0 GHz		2.5 3.5		dB dB
Supply Current (Icq)			62		mA

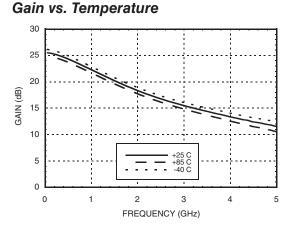

Note: Data taken with broadband bias tee on device output.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

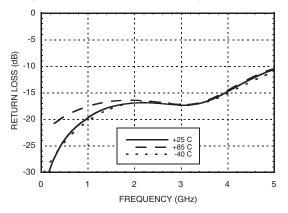



Broadband Gain & Return Loss

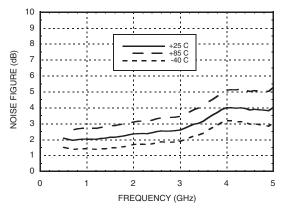
Input Return Loss vs. Temperature



Reverse Isolation vs. Temperature

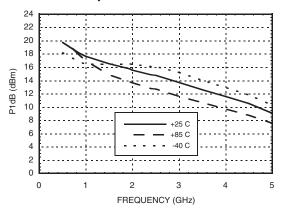


HMC478MP86 / 478MP86E


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

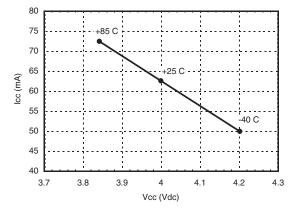
Output Return Loss vs. Temperature

Noise Figure vs. Temperature

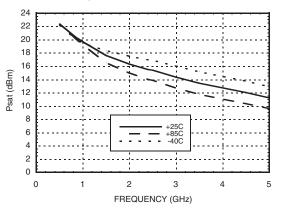


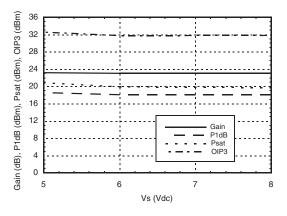
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



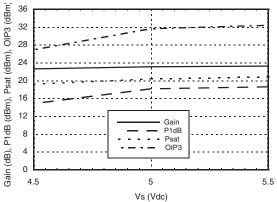

P1dB vs. Temperature

Output IP3 vs. Temperature


Vcc vs. Icc Over Temperature for Fixed Vs= 5V, RBIAS= 18 Ohms


HMC478MP86 / 478MP86E

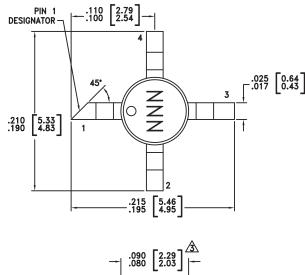
SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

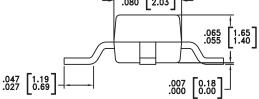


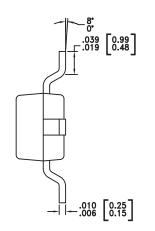
Gain, Power & OIP3 vs. Supply Voltage for Constant Icc= 62 mA @ 850 MHz

Gain, Power & OIP3 vs. Supply Voltage for Rs = 18 Ohms @ 850 MHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.






Absolute Maximum Ratings

	•	
Collector Bias Voltage (Vcc)	+6.0 Vdc	
Collector Bias Current (Icc)	100 mA	
RF Input Power (RFIN)(Vcc = +4.3 Vdc)	+5 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 9 mW/°C above 85 °C)	0.583 W	
Thermal Resistance (junction to lead)	111.5 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1C	
torage Temperature	0.583 W 111.5 °C/W -65 to +150 °C -40 to +85 °C	

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS]

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

HMC478MP86 / 478MP86E

MMIC AMPLIFIER, DC - 4 GHz

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

SiGe HBT GAIN BLOCK

4. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

5. THE MICRO-P PACKAGE IS DIMENSIONALLY COMPATIBLE WITH THE "MICRO-X PACKAGE"

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC478MP86	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	478
HMC478MP86E	MC478MP86E RoHS-compliant Low Stress Injection Molded Plastic		MSL1 ^[2]	<u>478</u>

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC478MP86 / 478MP86E


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
3	RFOUT	RF output and DC Bias (Vcc) for the output stage.	
2, 4	GND	These pins must be connected to RF/DC ground.	GND =

Application Circuit

Recommended Bias Resistor Values for Icc= 62 mA, Rbias= (Vs - Vcc) / Icc

Supply Voltage (Vs)	5V	6V	8V
RBIAS VALUE	18 Ω	35 Ω	67 Ω
RBIAS POWER RATING	1/8 W	1/4 W	1/2 W

Note:

1. External blocking capacitors are required on

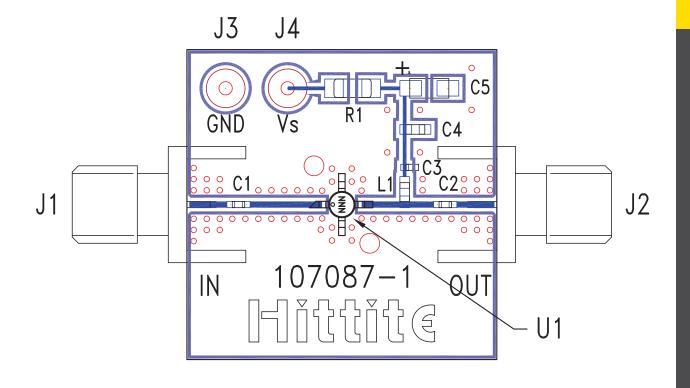
RFIN and RFOUT.

2. RBIAS provides DC bias stability over temperature.

Recommended Component Values for Key Application Frequencies

Ormanant	Frequency (MHz)					
Component	50	900	1900	2200	2400	3500
L1	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH
C1, C2	0.01 µF	100 pF				

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



HMC478MP86 / 478MP86E

SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Evaluation PCB

v03.0810

List of Materials for Evaluation PCB 110170 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	DC Pin	
C1, C2	Capacitor, 0402 Pkg.	
C3	100 pF Capacitor, 0402 Pkg.	
C4	1000 pF Capacitor, 0603 Pkg.	
C5	2.2 µF Capacitor, Tantalum	
R1	Resistor, 1210 Pkg.	
L1	Inductor, 0603 Pkg.	
U1	HMC478MP86 / HMC478MP86E	
PCB [2]	107087 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

8 AMPLIFIERS - DRIVER & GAIN BLOCK - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.