


#### **Typical Applications**

Prescaler for DC to 18 GHz PLL Applications:

- Point-to-Point / Multi-Point Radios
- VSAT Radios
- Fiber Optic
- Test Equipment
- Military

#### **Functional Diagram**



# HMC494LP3 / 494LP3E

### SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

#### Features

Ultra Low SSB Phase Noise: -150 dBc/Hz Very Wide Bandwidth Output Power: -4 dBm Single DC Supply: +5V 16 Lead 3x3mm QFN Package: 9 mm<sup>2</sup>

#### **General Description**

The HMC494LP3 & HMC494LP3E are low noise Divide-by-8 Static Dividers utilizing InGaP GaAs HBT technology packaged in leadless 3x3 mm QFN surface mount plastic packages. This device operates from DC (with a square wave input) to 18 GHz input frequency from a single +5V DC supply. The low additive SSB phase noise of -150 dBc/Hz at 100 kHz offset helps the user maintain excellent system noise performance.

#### Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System, Vcc= +5V

| Parameter                        | Conditions                  | Min. | Тур. | Max. | Units  |
|----------------------------------|-----------------------------|------|------|------|--------|
| Maximum Input Frequency          |                             | 18   | 19   |      | GHz    |
| Minimum Input Frequency          | Sine Wave Input. [1]        |      | 0.2  | 0.5  | GHz    |
| Input Power Range                | Fin = 2 to 12 GHz           | -20  | -15  | +10  | dBm    |
|                                  | Fin = 12 to 16 GHz          | -20  | -15  | +3   | dBm    |
|                                  | Fin = 16 to 18 GHz          | -15  | -10  | 0    | dBm    |
| Output Power                     | Fin = 0.5 to 18 GHz         | -7   | -4   |      | dBm    |
| Reverse Leakage                  | Both RF Outputs Terminated  |      | 55   |      | dB     |
| SSB Phase Noise (100 kHz offset) | Pin = 0 dBm, Fin = 6 GHz    |      | -150 |      | dBc/Hz |
| Output Transition Time           | Pin = 0 dBm, Fout = 882 MHz |      | 100  | İ    | ps     |
| Supply Current (Icc1 + Icc2)     |                             |      | 103  |      | mA     |

#### 1. Divider will operate down to DC for square-wave input signal

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

4

# HMC494\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

### COMPARABLE PARTS

View a parametric search of comparable parts.

#### EVALUATION KITS

• HMC494LP3 Evaluation Board

#### DOCUMENTATION

#### Data Sheet

HMC494 Data Sheet

#### REFERENCE MATERIALS

#### **Quality Documentation**

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

### DESIGN RESOURCES

- HMC494 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

### DISCUSSIONS

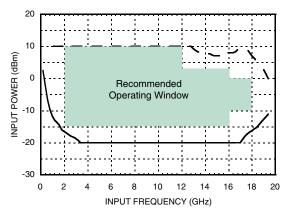
View all HMC494 EngineerZone Discussions.

### SAMPLE AND BUY

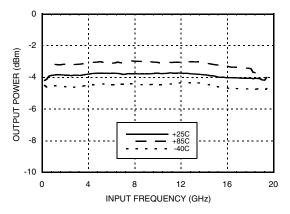
Visit the product page to see pricing options.

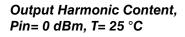
### TECHNICAL SUPPORT

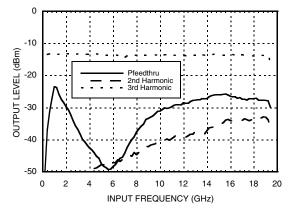
Submit a technical question or find your regional support number.


### DOCUMENT FEEDBACK

Submit feedback for this data sheet.



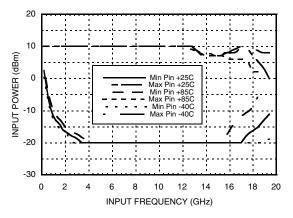





#### Input Sensitivity Window, T= 25 °C

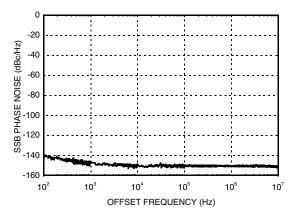


**Output Power vs. Temperature** 

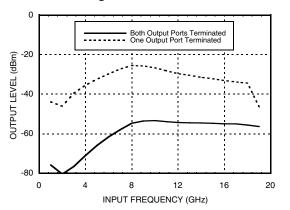








# HMC494LP3 / 494LP3E

### SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz


#### Input Sensitivity Window vs. Temperature



SSB Phase Noise Performance, Pin= 0 dBm, T= 25 °C



Reverse Leakage, Pin= 0 dBm, T= 25 °C




Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.





**Output Voltage Waveform,** Pin= 0 dBm, Fout= 882 MHz, T= 25 °C

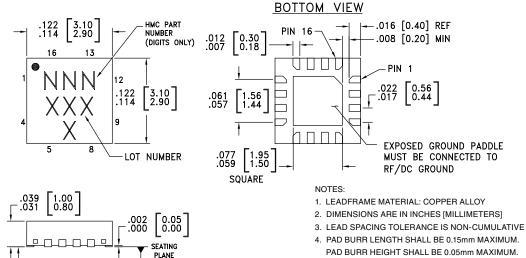




#### ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

# HMC494LP3 / 494LP3E

### SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz


#### Absolute Maximum Ratings

| RF Input (Vcc = +5V)                                                 | +13 dBm        |
|----------------------------------------------------------------------|----------------|
| Supply Voltage (Vcc1, Vcc2)                                          | +5.5V          |
| Channel Temperature (Tc)                                             | 135 °C         |
| Continuous Pdiss (T = 85 °C)<br>(derate 11.9 mW/° C above 85 °C)     | 593 mW         |
| Thermal Resistance (R <sub>TH</sub> )<br>(junction to ground paddle) | 84 °C/W        |
| Storage Temperature                                                  | -65 to +150 °C |
| Operating Temperature                                                | -40 to +85 °C  |
| ESD Sensitivity (HBM)                                                | Class 1A       |

#### Typical Supply Current vs. Vcc

| Vcc1, Vcc2 (V) | lcc (mA) |
|----------------|----------|
| 4.75           | 90       |
| 5.0            | 103      |
| 5.25           | 115      |

Note: Divider will operate over full voltage range shown above



#### PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.

- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN

### Package Information

.003[0.08] C

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating          | Package Marking <sup>[3]</sup> |
|-------------|----------------------------------------------------|---------------|---------------------|--------------------------------|
| HMC494LP3   | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 <sup>[1]</sup> | 494<br>XXXX                    |
| HMC494LP3E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 <sup>[2]</sup> | <u>494</u><br>XXXX             |

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

-C-

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

## **Outline Drawing**



HMC494LP3 / 494LP3E

### SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz



#### **Pin Description**

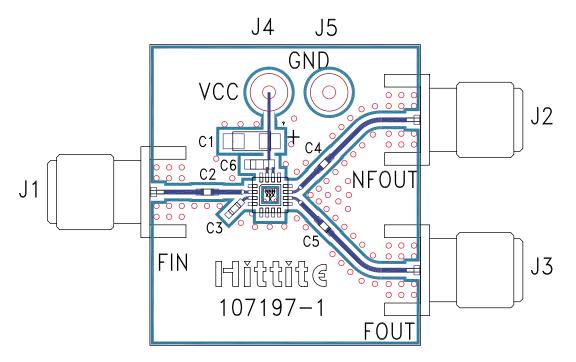
| Pin Number            | Function   | Description                                                                                                | Interface Schematic |
|-----------------------|------------|------------------------------------------------------------------------------------------------------------|---------------------|
| 1, 4-9,<br>12, 13, 16 | N/C        | No connection.                                                                                             |                     |
| 2                     | IN         | RF Input must be DC blocked.                                                                               | 500<br>IN 0         |
| 3                     | ĪN         | RF Input 180° out of phase with pin 2 for differential operation.<br>AC ground for single ended operation. | 500<br>NO           |
| 10                    | OUT        | Divided Output.                                                                                            | Vcc 0 5V            |
| 11                    | OUT        | Divided output 180° out of phase with pin 10.                                                              | Vcc 05V             |
| 14, 15                | Vcc1, Vcc2 | Supply voltage 5V $\pm$ 0.25V. Connect both pins to +5V supply.                                            |                     |
|                       | GND        | Ground: Backside of package has exposed metal ground slug which must be connected to RF/DC ground.         |                     |

FREQUENCY DIVIDERS & DETECTORS - SMT

4

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




## HMC494LP3 / 494LP3E

#### v05.1211



### SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

#### Evaluation PCB



#### List of Materials for Evaluation PCB 107384 [1]

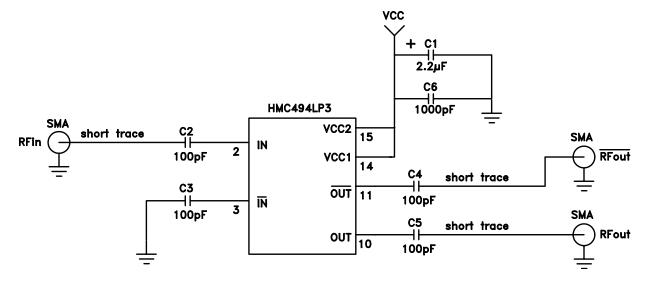
| Item    | Description                        |
|---------|------------------------------------|
| J1 - J3 | PCB Mount SMA RF Connector         |
| J4, J5  | DC Pin                             |
| C2 - C5 | 100 pF Capacitor, 0402 Pkg.        |
| C6      | 1000 pF Capacitor, 0603 Pkg.       |
| C1      | 2.2 uF Tantalum Capacitor          |
| U1      | HMC494LP3 / HMC494LP3E Divide-by-2 |
| PCB [2] | 107197 Eval Board                  |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. This evaluation board is designed for single ended input testing. J2 and J3 provide differential output signals.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




# HMC494LP3 / 494LP3E

### SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz



**Application Circuit** 



v05.1211

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.