

v06.0809

GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

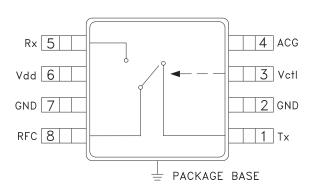
Typical Applications

The HMC546MS8G(E) is ideal for:

- · LNA Protection, WiMAX, WiBro
- Cellular/PCS/3G Infrastructure
- Private Mobile Radio and Public Safety Handsets
- Automotive Telematics

Features

High Input P0.1dB: +40 dBm Tx


Low Insertion Loss: 0.4 dB

High IIP3: +65 dBm

Positive Control: 0/+3V to 0/+8V

Failsafe Operation: Tx "on" When Unpowered

Functional Diagram

General Description

The HMC546MS8G(E) is a low-cost SPDT switch in 8-lead MSOP8G surface mount package for use in transmit-receive applications which require very low distortion at high signal power levels, up to 10 watts. The device can control signals from 200 - 2200 MHz* and is especially suited for cellular booster, PMR and automotive telematic applications. The design provides exceptional P0.1dB of +40 dBm and +65 dBm IIP3 on the Transmit (Tx) port. The failsafe topology allows the switch to provide a low loss path from RFC to Tx, when no DC power is available.

Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vdd = 3V, Vctl = 0/+3 Vdc, 50 Ohm System*

Para	ameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		216 - 222		869 - 960		2010 - 2025		2110 - 2170		MHz				
Insertion Loss	Tx - RFC RFC - Rx		0.4 0.4	0.7 0.7		0.4 0.5	0.7 0.8		0.3 0.5	0.6 0.8		0.4 1.1	0.7 1.5	dB dB
Isolation	Tx - RFC RFC - Rx	25 33	30 40		20 23	24 30		17 25	20 30		8 25	12 30		dB dB
Return Loss	Tx - RFC RFC - Rx		20 20			25 25			23 20			16 13		dB dB
Input Power for 0.1 dB Compression	Tx - RFC RFC - Rx	37 19	39 21		37 19	39 21		38 17.5	>40 19.5		38 17.5	>40 19.5		dBm dBm
Input Power for 1 dB Compression	Tx - RFC RFC - Rx	43 22			43 22			43 22			43 22			dBm dBm
Input Third Order Intercept (Two-tone input power = +19 dBm each tone)	Tx - RFC Vctl = 0/+3V RFC - Rx Tx - RFC Vctl = 0/+5V RFC - Rx		60 31 60 57			66 32 66 48			67 31 67 37			67 31 67 43		dBm dBm dBm dBm
Switching Characteristics	tRISE, tFALL (10/90% RF) tON, (50% CTL to 90% RF) tOFF (50% CTL to 10% RF)		21 102 36			21 102 36			21 102 36			21 102 36		ns ns ns

^{*} Specifications and data reflect HMC546MS8G(E) measured using the respective application circuits for each designated frequency band found herein

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC546MS8G* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

· HMC546MS8G Evaluation Board.

DOCUMENTATION

Data Sheet

• HMC546MS8G Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- HMC Legacy PCN: MS##, MS##E and MS##G,MS##GE packages - Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: MS8G (QTR: 2014-00393)
- PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change
- Semiconductor Qualification Test Report: PHEMT-B (QTR: 2013-00233)

DESIGN RESOURCES

- HMC546MS8G Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC546MS8G EngineerZone Discussions.

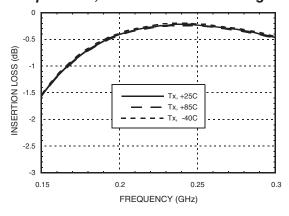
SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

TECHNICAL SUPPORT

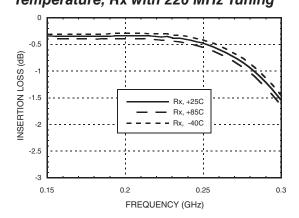
Submit a technical question or find your regional support number.

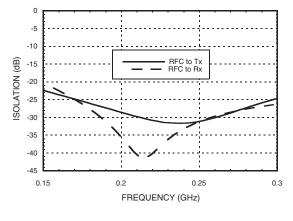
DOCUMENT FEEDBACK 🖳


Submit feedback for this data sheet.

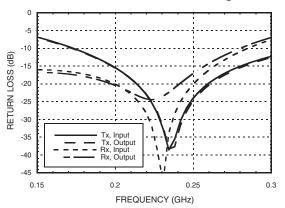
HMC546MS8G / HMC546MS8GE

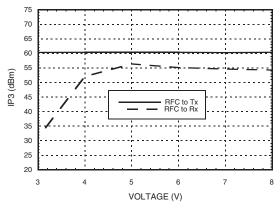
v06.0809


Insertion Loss vs. Temperature, Tx with 220 MHz Tuning


Insertion Loss vs. Temperature, Rx with 220 MHz Tuning

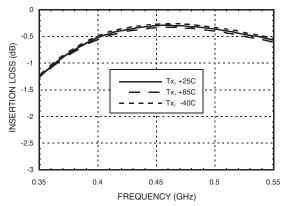
GaAs MMIC 20W FAILSAFE SWITCH


0.2 - 2.2 GHz

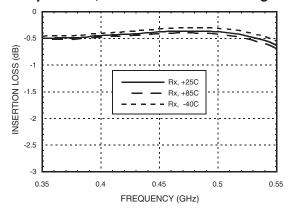

Isolation with 220 MHz Tuning

Return Loss with 220 MHz Tuning

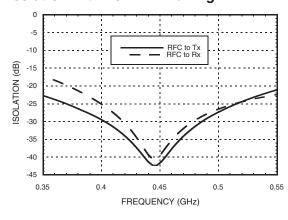
Input IP3 vs. Voltage with 220 MHz Tuning

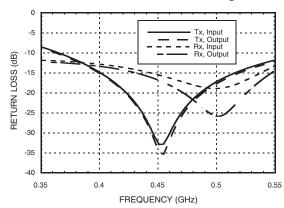


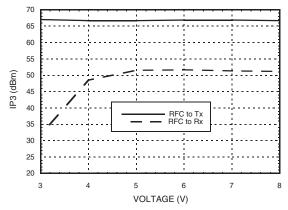
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

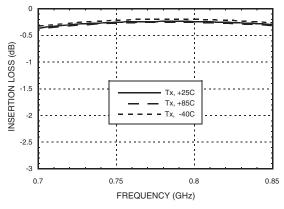

Insertion Loss vs. Temperature, Tx with 457 MHz Tuning


Insertion Loss vs.
Temperature, Rx with 457 MHz Tuning

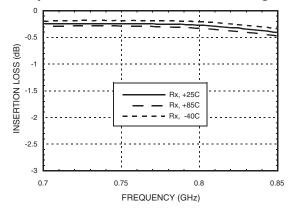

Isolation with 457 MHz Tuning

Return Loss with 457 MHz Tuning

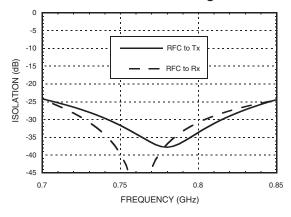
Input IP3 vs. Voltage with 457 MHz Tuning

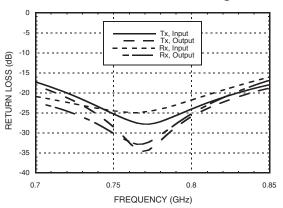


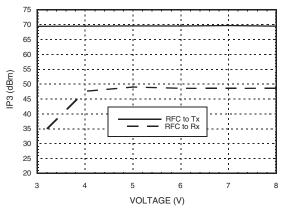
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

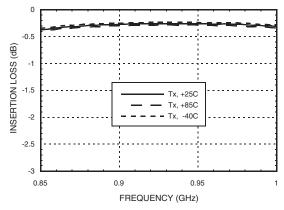

Insertion Loss vs. Temperature, Tx with 785 MHz Tuning


Insertion Loss vs. Temperature, Rx with 785 MHz Tuning

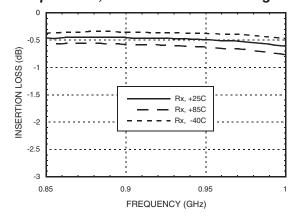

Isolation with 785 MHz Tuning

Return Loss with 785 MHz Tuning

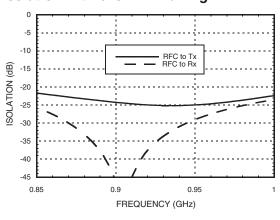
Input IP3 vs. Voltage with 785 MHz Tuning

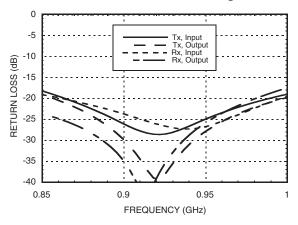


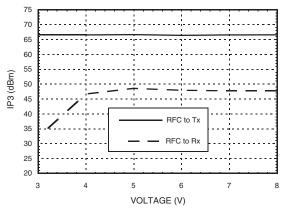
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

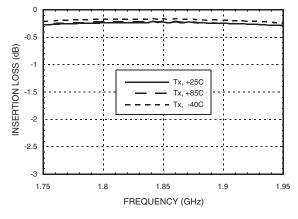

Insertion Loss vs. Temperature, Tx with 915 MHz Tuning


Insertion Loss vs. Temperature, Rx with 915 MHz Tuning

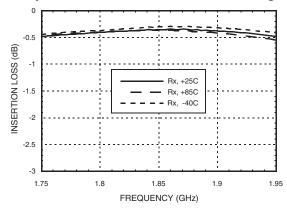

Isolation with 915 MHz Tuning

Return Loss with 915 MHz Tuning

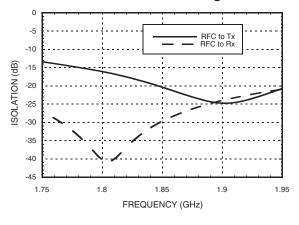
Input IP3 vs. Voltage with 915 MHz Tuning

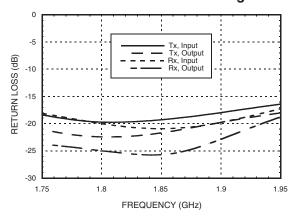

HMC546MS8G / HMC546MS8GE

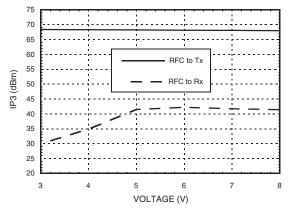
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

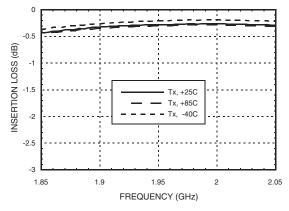

Insertion Loss vs.
Temperature, Tx with 1843 MHz Tuning


Insertion Loss vs. Temperature, Rx with 1843 MHz Tuning

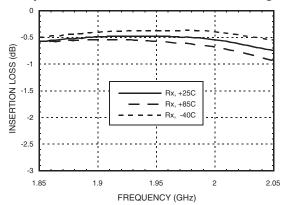

Isolation with 1843 MHz Tuning

Return Loss with 1843 MHz Tuning

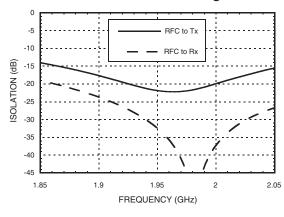
Input IP3 vs. Voltage with 1843 MHz Tuning

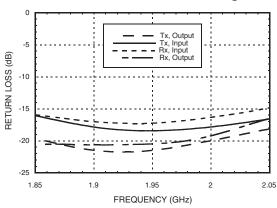


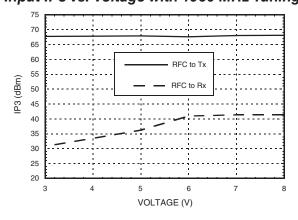
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

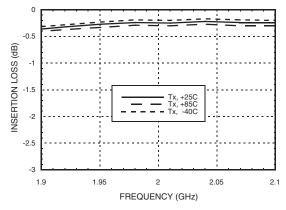

Insertion Loss vs. Temperature, Tx with 1960 MHz Tuning


Insertion Loss vs. Temperature, Rx with 1960 MHz Tuning

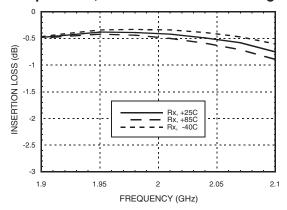

Isolation with 1960 MHz Tuning

Return Loss with 1960 MHz Tuning

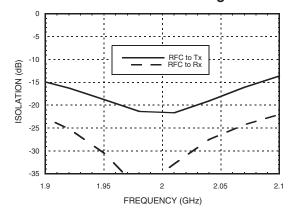
Input IP3 vs. Voltage with 1960 MHz Tuning

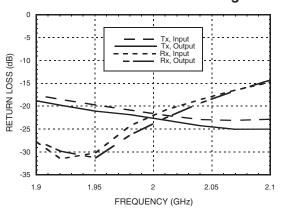

HMC546MS8G / HMC546MS8GE

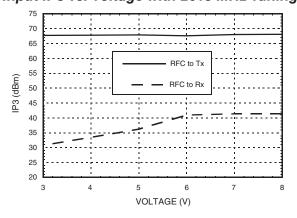
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

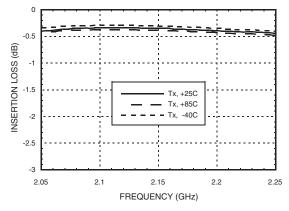

Insertion Loss vs.
Temperature, Tx with 2015 MHz Tuning


Insertion Loss vs. Temperature, Rx with 2015 MHz Tuning

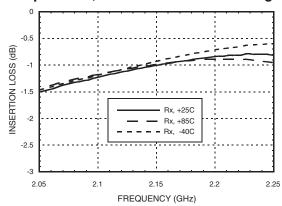

Isolation with 2015 MHz Tuning

Return Loss with 2015 MHz Tuning

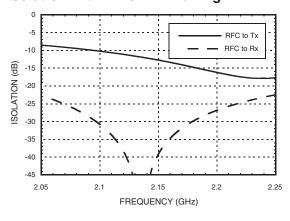
Input IP3 vs. Voltage with 2015 MHz Tuning

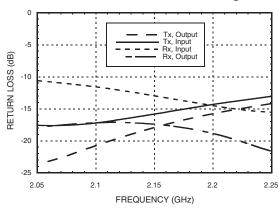


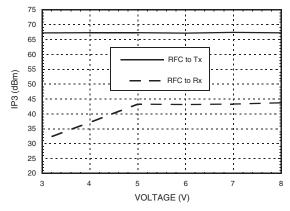
v06.0809



GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz


Insertion Loss vs. Temperature, Tx with 2140 MHz Tuning


Insertion Loss vs. Temperature, Rx with 2140 MHz Tuning


Isolation with 2140 MHz Tuning

Return Loss with 2140 MHz Tuning

Input IP3 vs. Voltage with 2140 MHz Tuning

HMC546MS8G / HMC546MS8GE

v06.0809

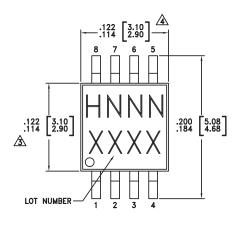
GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

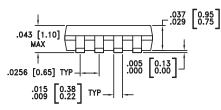
Absolute Maximum Ratings

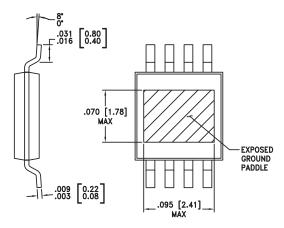
	3V	5V	
Max. CW Input Power [1][2] Tx P		40 dBm 24 dBm	40 dBm 29 dBm
Max Channel Temp.		150 °C	150 °C
Thermal Resistance	Tx Port Rx Port	54 °C/W 68 °C/W	54 °C/W 86 °C/W
Continuous Dissipated Tx Port Power Rx Port		1.12 W 73 mW	1.12 W 232 mW
Supply Voltage (Vdd)	+10V		
Control Voltage Range (Vctl	-0.2 to Vdd + 1V		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 1A		

- [1] Do not "hot switch" power levels greater than +24 dBm.
- [2] Max input power can be higher for duty cycle <100%

Truth Table


Control Input	Signal Path State					
Vctl (V)	RFC To Tx	RFC to Rx				
0.0	OFF	ON				
Vdd	ON	OFF				
Vdd = +3V to +8V Control Input Voltage Tolerances are ± 0.2 Vdc.						


DC blocking capacitors are required at ports RFC, Tx and Rx.



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

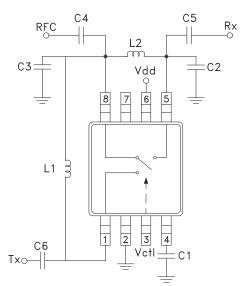
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC546MS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H546 XXXX	
HMC546MS8GE	MC546MS8GE RoHS-compliant Low Stress Injection Molded Plastic		MSL1 [2]	<u>H546</u> XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v06.0809

GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Tx	This pin is DC coupled and matched to 50 Ohms.	
2, 7	GND	This pin must be connected to PCB RF ground.	⊖ GND —
3	Vctl	See Truth Table.	Vetl 0—
4	ACG	External capacitor to ground is required. See application circuit herein.	
5	Rx	This pin is DC coupled and matched to 50 Ohms.	
6	Vdd	Supply Voltage	Vdd 0
8	RFC	This pin is DC coupled and matched to 50 Ohms.	

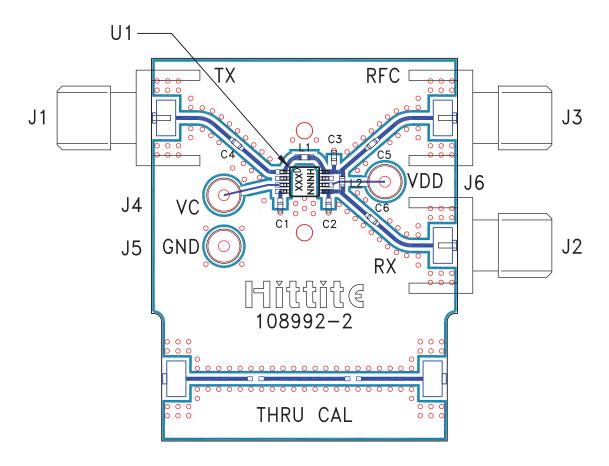
Application Circuit

Components for Selected Frequencies

Tuned Frequency	220 MHz	457 MHz	785 MHz	915 MHz	1843 MHz	1960 MHz	2015 MHz	2140 MHz
Evaluation PCB Number	110123	110124	110125	110126	110127	110128	115708	110129
C1	150 pF	33 pF	11 pF	8 pF	1.6 pF	1.5 pF	1.3 pF	1.2 pF
C2	12 pF	6.2 pF	2 pF	1.8 pF	N/A	N/A	N/A	N/A
C3	12 pF	7 pF	3 pF	2.7 pF	1 pF	1 pF	0.9 pF	1 pF
C4-C6 [1]	1000pF	1000pF	1000pF	1000pF	1000pF	1000pF	1000pF	1000pF
L1	390 nH ^[2]	100 nH ^[4]	33 nH ^[4]	23 nH ^[3]	3.3 nH ^[3]	2.4 nH ^[3]	2.2 nH ^[3]	1 nH ^[3]
L2	36 nH ^[3]	15 nH ^[3]	10 nH ^[3]	8.2 nH ^[3]	3.9 nH ^[3]	3.6 nH ^[3]	3.6 nH ^[3]	2.7 nH ^[4]

- [1] DC blocking capacitors
- [2] Coilcraft 0603LS series inductor, 5% tolerance
- [3] Coilcraft 0402CS series inductor, 5% tolerance
- [4] Toko LL1005-FH series inductor, 5% tolerance

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC546MS8G / HMC546MS8GE

v06.0809

GaAs MMIC 20W FAILSAFE SWITCH 0.2 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB [3]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
C1 - C6 [1]	Capacitor, 0402 Pkg.
L1 - L2 [1]	Inductor, 0402 Pkg.
U1	HMC546MS8G / HMC546MS8GE T/R Switch
PCB [2]	108992 Evaluation PCB

- [1] Please refer to "Components for Selected Frequencies" table for values.
- [2] Circuit Board Material: Rogers 4350
- [3] When requesting an evaluation board, please reference the appropriate evaluation PCB number listed in the table

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

[&]quot;Components for Selected Frequencies."