
14 Gbps, 2:1 SELECTOR

Typical Applications

The HMC728LC3C is ideal for:

- 2:1 Multiplexer up to 14 Gbps
- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 14 Gbps
- Redundant Path Switching
- Built-in Test

Functional Diagram

Electrical Specifications, T_A = +25 °C, Vee = -3.3 V

Features

Supports High Data Rates: up to 14 Gbps Single-Ended Inputs Differential or Single-Ended Outputs Fast Rise and Fall Times: 17 / 15 ps Low Power Consumption: 250 mW typ. Propagation Delay: 125 ps Single Supply: -3.3 V 16 Lead Ceramic 3x3 mm SMT Package: 9 mm²

General Description

The HMC728LC3C is a 2:1 Selector designed to support data transmission rates of up to 14 Gbps, and selector port operation of up to 14 GHz. The selector routes one of the two single-ended inputs to the differential output upon assertion of the proper select port.

All differential inputs to the HMC728LC3C are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. The differential CMI outputs are source terminated to to 50 Ohms and may also be AC or DC coupled. Outputs can be connected directly to a 50 Ohm ground-terminated system or drive devices with CML logic input. The HMC728LC3C operates from a single -3.3 V supply and is available in ROHS-compliant 3x3 mm SMT package.

Parameter	Conditions	Min.	Тур.	Мах	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			76		mA
Maximum Data Rate			14		Gbps
Maximum Select Rate			14		GHz
Maximum Serial Transmission Rate			26		Gbps
Input Vcm	Vin = 600 mVp-p, Single-Ended	-0.375	-0.300	-0.275	V
Input Voltage Range		-1.5		0.5	V
Input Differential Range		0.1		2.0	Vp-p
Input Return Loss	Frequency <14 GHz		10		dB
	Single-Ended, peak-to-peak		550		mVp-p
Output Amplitude	Differential, peak-to-peak		1100		mVp-p
Output High Voltage			-10		mV

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC728* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• HMC728LC3C Evaluation Board

DOCUMENTATION

Data Sheet

• HMC728 Data Sheet

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

DESIGN RESOURCES

- HMC728 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC728 EngineerZone Discussions.

SAMPLE AND BUY

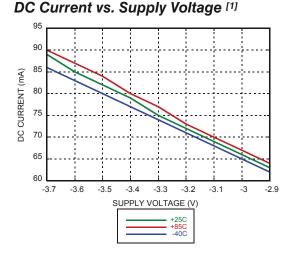
Visit the product page to see pricing options.

TECHNICAL SUPPORT

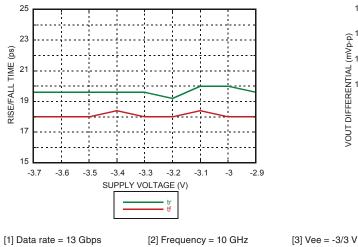
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

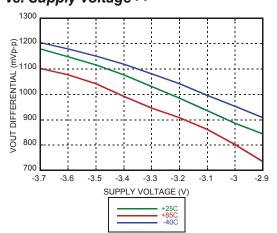
Submit feedback for this data sheet.

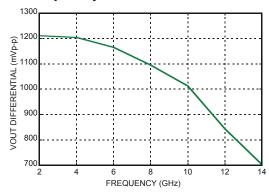


14 Gbps, 2:1 SELECTOR


Electrical Specifications (continued)

Parameter	Conditions	Min.	Тур.	Max	Units
Output Low Voltage			-560		mV
Output Rise / Fall Time	Differential, 20% - 80%		17 / 15		ps
Output Return Loss	Frequency <14 GHz		10		dB
Random Jitter, Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, p-p
Propagation Delay, A or B to D _{OUT} , td			125		ps
Propagation Delay Select to Data, tds			135		ps
Set Up & Hold Time, t _{SH}			6		ps


[1] Deterministic jitter calculated by simultaneously measuring the jitter of a 300 mV, 13 GHz, 2¹⁵-1 PRBS input, and a single-ended output

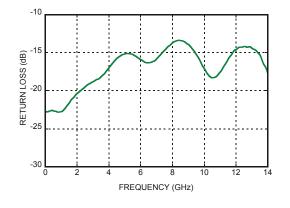

Rise / Fall Time vs. Supply Voltage [1]

Output Differential Voltage vs. Supply Voltage ^[2]

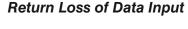
Output Differential Voltage vs. Frequency [3]

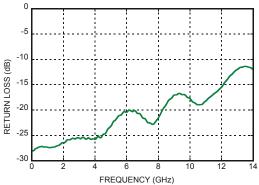
ps rms ps, p-p ps ps ps t

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC728LC3C

14 Gbps, 2:1 SELECTOR

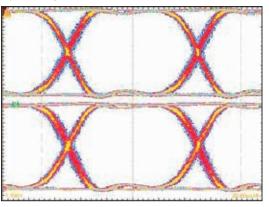

v06.0814

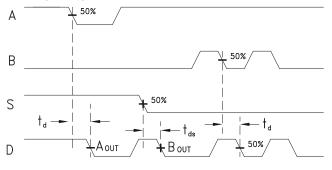


Output Return Loss vs. Frequency

Return Loss of Select Input RETURN LOSS (dB) -10 -15 -20 -25 -30 0 2 8 10 12 14 4 6 FREQUENCY (GHz)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




14 Gbps, 2:1 SELECTOR

HIGH SPEED LOGIC - SMT

Eye Diagram

Timing Diagram

td = propagation delay, A or B to Dout tds = propagation delay, Select to Dout

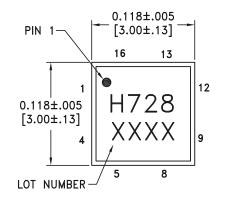
Truth Table

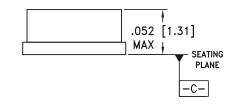
Inputs	Outputs
S	DP
н	A -> D
L	B -> D
H - Positive voltage level L - Negative voltage level	
Notes: D = DP - DN S = SP - SN	

[1] Test Conditions: Waveform generated with an Agilent N4903A J-Bert. Rate = 10 Gbps Eye Diagram data presented on a Tektronix CSA 8000

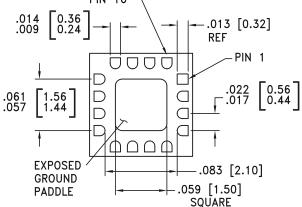
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0814


14 Gbps, 2:1 SELECTOR


Absolute Maximum Ratings

	-	
Power Supply Voltage (Vee)	-3.75 V to +0.5 V	
Input Signals	-2 V to +0.5 V	
Output Signals	-1.5 V to +1 V	
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C)	0.68 W	
Thermal Resistance (R _{th j-p}) Worst case junction to package paddle	59 °C/W	
Maximum Junction Temperature	125 °C	
Storage Temperature	-65 °C to +150 °C	
Operating Temperature	-40 °C to +85 °C	
ESD Sensitivity (HBM)	Class 1C	



Outline Drawing

BOTTOM VIEW PIN 16

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE. 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO GND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC728LC3C	Alumina White Gold over Nickel MSL3 ¹¹		H728 XXXX	
11 Max pack reflew temperature of 260 °C				

[1] Max peak reflow temperature of 260 °C [2] 4-Digit lot number XXXX

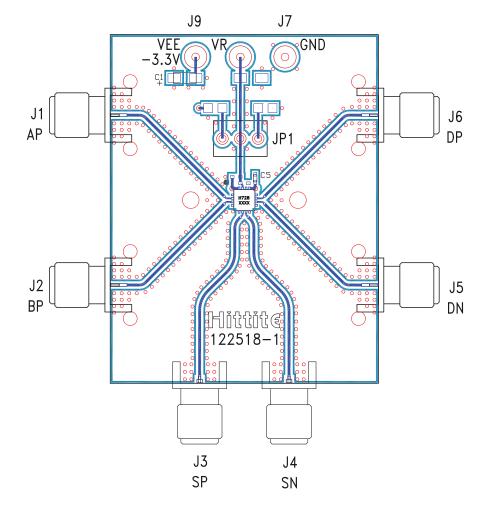
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ROHS V

^{v06.0814} 14 Gbps, 2:1 SELECTOR

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds.	
2, 3	AP, BP	Single-Ended Data Inputs: Current Mode Logic (CML) referenced to positive supply.	GND O
6, 7	SP, SN	Differential Select Inputs: Current Mode Logic (CML) referenced to positive supply	GND O GND SP O SN
10, 11	DP, DN	Differential Data Outputs: Common Mode Logic (CML) referenced to positive supply.	GND O GND O GND O GND O DN
13, 16	Vee	Negative Supply	
14, Package Base	GND	Supply Ground	
15	N/C	No Connection	


HMC728LC3C

14 Gbps, 2:1 SELECTOR

v06.0814

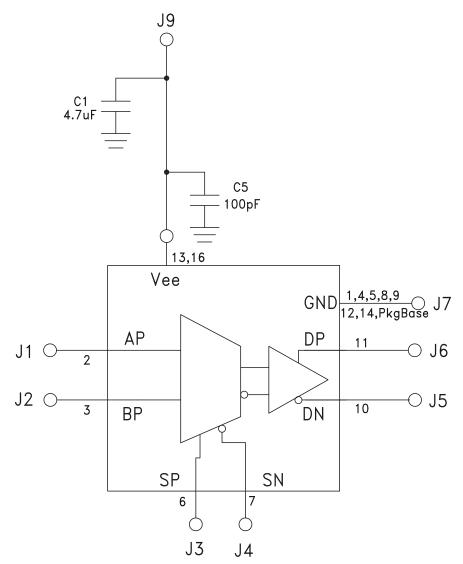
Evaluation PCB

List of Materials for Evaluation PCB 122520 [1]

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7, J9	DC Pin	
C1	4.7 μF Capacitor, Tantalum	
C5	100 pF Capacitor, 0402 Pkg.	
U1	HMC728LC3C High Speed Logic, 2:1 Selector	
PCB ^[2]	122518 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.


^[2] Circuit Board Material: Arlon 25FR or Rogers 4350

14 Gbps, 2:1 SELECTOR

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.