

Typical Applications

The HMC7357LP5GE is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT & SATCOM

Functional Diagram

HMC7357LP5GE

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Features

+35 dBm Pout @ 34% PAE High P1dB Output Power: +34 dBm High Output IP3: +41.5 dBm High Gain: 29 dB 50 Ohm Matched Input/Output Supply Voltage: Vdd = +8V @ 1200 mA 24-Lead 5x5 mm SMT Package

General Description

The HMC7357LP5GE is a three-stage GaAs pHEMT MMIC Medium Power Amplifier that operates between 5.5 and 8.5 GHz. The amplifier provides 29 dB of gain and +35 dBm of saturated output power at 34% PAE from a +8V supply. With an excellent Output IP3 of +41.5 dBm, the HMC7357LP5GE is ideal for linear applications such as high capacity point-to-point and point-to-multi-point radios or VSAT/SATCOM applications demanding +35 dBm of efficient saturated output power. The RF I/Os are internally matched to 50 Ohms for ease of use. The HMC7357LP5GE is packaged in a leadless 5x5 mm plastic surface mount package and is compatible with surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ}$ C Vdd1 = Vdd2 = Vdd3 = Vdd4 = 8V. Idd = 1200 mA^[1]

Min.	Тур.	Max.	Min.	Тур.	Max.	Units
	5.5 - 7			7 - 8.5		GHz
26.5	29.5		28	31		dB
	0.0214			0.0234		dB/ °C
	14			14		dB
	22			15		dB
31.5	34.5		31.5	34.5		dBm
	35			35		dBm
	41.5			41.5		dBm
	1200			1200		mA
	Min. 26.5	Min. Typ. 5.5 - 7 26.5 29.5 0.0214 14 14 22 31.5 34.5 35 41.5	Min. Typ. Max. 5.5 - 7 26.5 29.5 26.5 29.5 0.0214 14 22 31.5 31.5 34.5 35 41.5 41.5 41.5	Min. Typ. Max. Min. 5.5 - 7 26.5 29.5 28 0.0214 14 14 14 22 31.5 34.5 31.5 35 41.5 14 14 14	Min. Typ. Max. Min. Typ. 5.5 - 7 7 - 8.5 26.5 29.5 28 31 0.0214 0.0234 14 14 22 15 31.5 34.5 31.5 35 35 41.5 41.5	Min. Typ. Max. Min. Typ. Max. 5.5 - 7 7 - 8.5 26.5 29.5 28 31 0.0214 0.0234 14 14 22 15 31.5 34.5 31.5 35 35 41.5 41.5

[1] Adjust Vgg between -2 to -0.4V to achieve Idd = 1200 mA typical.

[2] Measurement taken at +8V @ 1200 mA, Pout / Tone = +20 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC7357* PRODUCT PAGE QUICK LINKS

Last Content Update: 11/29/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC7357LP5G Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC7357 Data Sheet

TOOLS AND SIMULATIONS \square

• HMC7357 S-Parameters

REFERENCE MATERIALS

Product Selection Guide

RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

 Package/Assembly Qualification Test Report: LP3, LP4, LP5 & LP5G (QTR: 2014-00145)

DESIGN RESOURCES

- HMC7357 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC7357 EngineerZone Discussions.

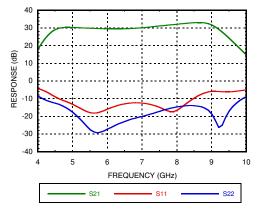
SAMPLE AND BUY

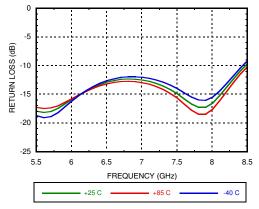
Visit the product page to see pricing options.

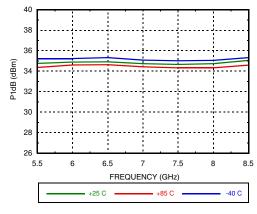
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

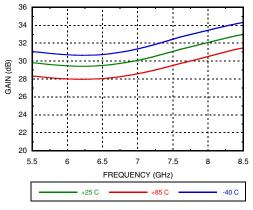
DOCUMENT FEEDBACK


Submit feedback for this data sheet.

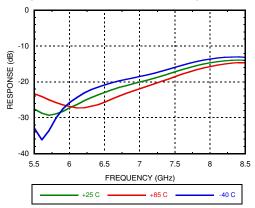

v00.0813


Gain & Return Loss

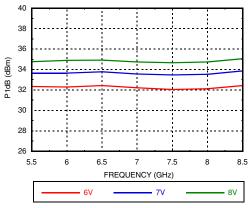
Input Return Loss vs. Temperature



P1dB vs. Temperature

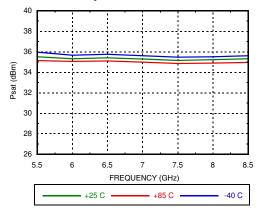


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

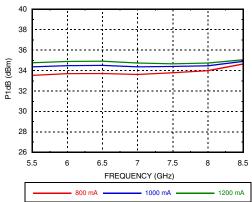

Gain vs. Temperature

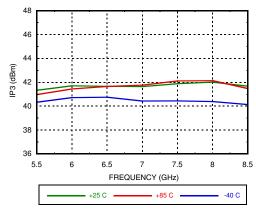
Output Return Loss vs. Temperature

P1dB vs Supply Voltage

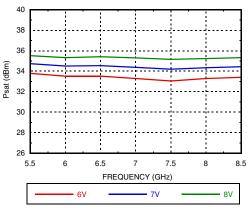


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

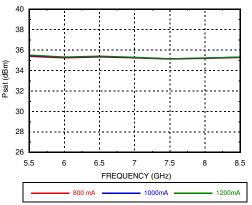



Psat vs. Temperature

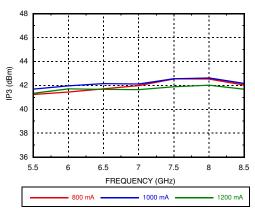
P1dB vs. Supply Current



Output IP3 vs. Temperature, Pout/tone = +20 dBm

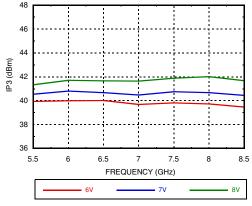


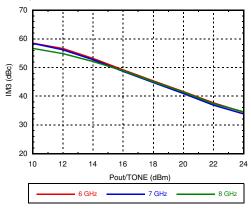
GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

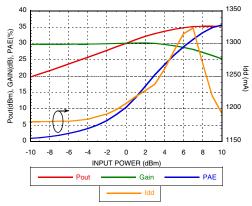

Psat vs. Supply Voltage

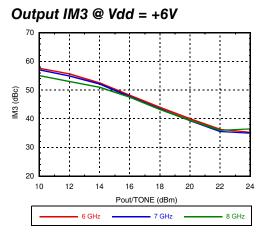
Psat vs. Supply Current

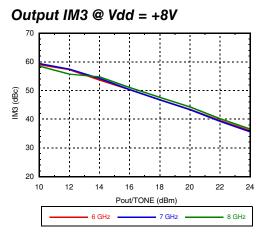
Output IP3 vs. Supply Current, Pout/tone = +20 dBm


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

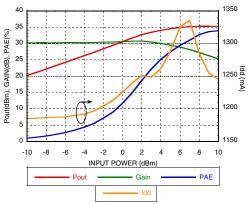

v00.0813


Output IP3 vs. Supply Voltage, Pout/tone = +20 dBm


Output IM3 @ Vdd =+7V



Power Compression @ 6 GHz

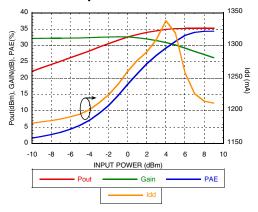


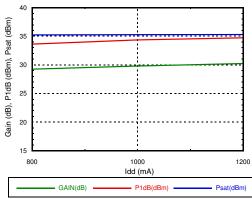
GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

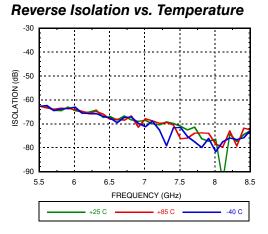
Power Compression @ 7 GHz

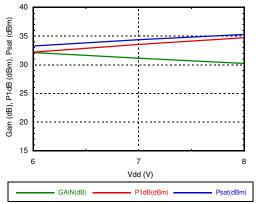
NEAR & POWER - SMT

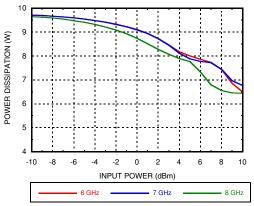
AMPLIFIERS - LINEAR & POWER - SMT


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v00.0813


Power Compression @ 8 GHz


Gain & Power vs. Supply Current @ 7 GHz


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Gain & Power vs. Supply Voltage @ 7 GHz

Power Dissipation

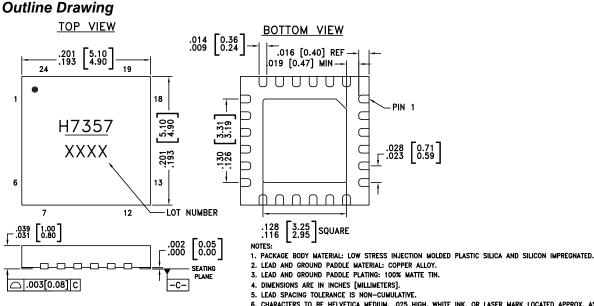
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Absolute Maximum Ratings

+9 Vdc
-2 to -0.4 Vdc
+22 dBm
175 °C
12.6 W
7.5 °C/W
-65 to 150°C
-40 to 85 °C
Class 1A, passed 250V

HMC7357LP5GE

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz


Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+6	1200
+7	1200
+8	1200

Adjust Vgg to achieve Idd = 1200 mA

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

6. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN. 7. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.25mm MAX.

- 8. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating ^[2]	Package Marking ^[1]
HMC7357LP5GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H7357</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

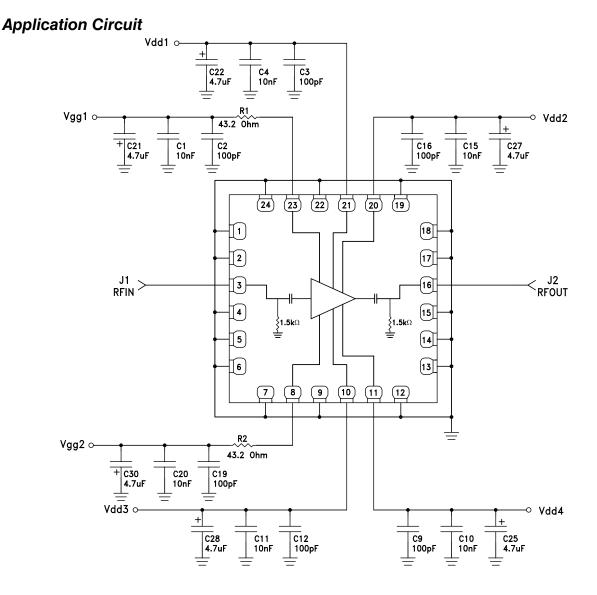
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v00.0813

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Pin Descriptions

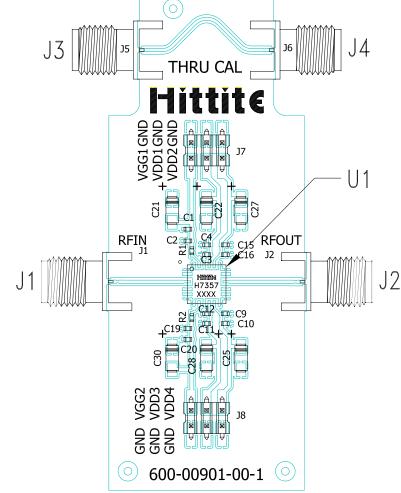
Pad Number	Function	Description	Interface Schematic
1, 4, 5, 6, 7, 9, 12, 13, 14, 17, 18, 19, 22, 24	N/C	These pins are not connected internally; however all data shown herein was measured with these pins connected to RF/DC ground externally.	
2, 15	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	
3	RFIN	This pin is DC coupled and matched to 50 Ohms.	RFINΟ
8, 23	Vgg2, Vgg1	Gate control for PA. Adjust Vgg to achieve recommended bias current. External bypass capacitors of 100 pF, 10 nF, and 4.7 μF are required. Apply Vgg bias to either pin 8 or pin 23.	Vgg1,2 0
10, 11, 20, 21	Vdd3, Vdd4, Vdd2, Vdd1	Drain bias voltage for the amplifier. External bypass capaci- tors of 100 pF, 10 nF, and 4.7 µF are required.	oVdd1−4
16	RFOUT	This pin is DC coupled and matched to 50 Ohms.	


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v00.0813

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


GaAs pHEMT MMIC 2 WATT

POWER AMPLIFIER, 5.5 - 8.5 GHz

v00.0813

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC7357LP5 [1]

Item	Description
J1 - J4	"K" Connector, SRI
J7, J8	DC Pin
C2, C3, C9, C12, C16, C19	100 pF Capacitor, 0402 Pkg.
C1, C4, C10, C11, C15, C20	10000 pF Capacitor, 0402 Pkg.
C21, C22, C25, C27, C28, C30	4.7 uF Capacitor, Case A Pkg.
R1, R2	43.2 Ohm Resistor, 0402 Pkg
U1	HMC7357LP5GE Amplifier
PCB ^[2]	600-00901-00 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC7357LP5GE

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Notes:

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.