

HMC738LP4 / 738LP4E

v02.0309

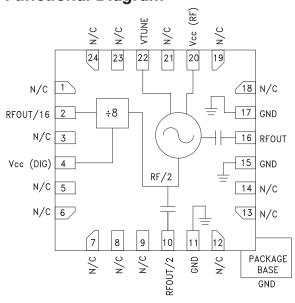
MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Typical Applications

The HMC738LP4(E) is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Features


Pout: +9 dBm

Phase Noise: -95 dBc/Hz @ 100 kHz Typ.

No External Resonator Needed

24 Lead 4x4mm SMT Package: 16mm²

Functional Diagram

General Description

The HMC738LP4(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO. The HMC738LP4(E) integrates a resonator, negative resistance device, varactor diode and divide-by-16 prescaler. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +9 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost leadless QFN 4x4 mm surface mount package

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc (RF), Vcc (DIG) = +5V

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		20.9 - 23.9		GHz
Power Output	RF OUT/ RF OUT/2 RF OUT/16	3 -3.5 -7		15 +3.5 -1	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-95		dBc/Hz
Tune Voltage	Vtune	1		13	V
Supply Current	Icc (RF), Icc (DIG)	160	200	220	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		-23 -40		dBc dBc
Pulling (into a 2.0:1 VSWR)			22		MHz pp
Pushing @ Vtune= 5V	-		-90		MHz/V
Frequency Drift Rate			3.5		MHz/°C

HMC738* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC738LP4 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC738 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES 🖵

- HMC738 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC738 EngineerZone Discussions.

SAMPLE AND BUY 🖵

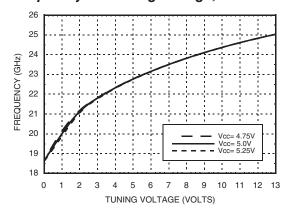
Visit the product page to see pricing options.

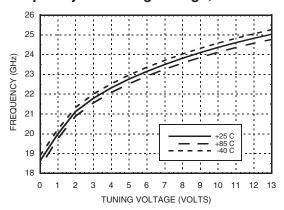
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

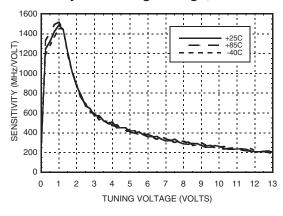
DOCUMENT FEEDBACK 🖳

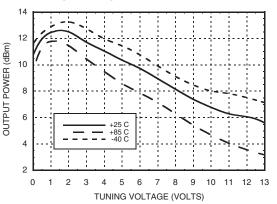
Submit feedback for this data sheet.

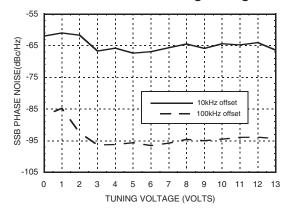

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

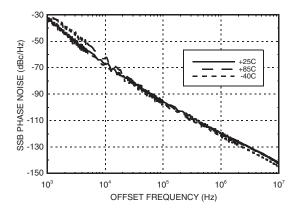


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

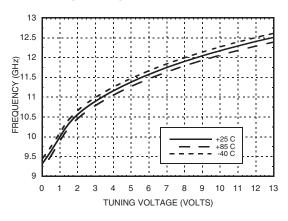

Frequency vs. Tuning Voltage, T= 25°C

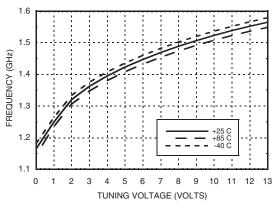

Frequency vs. Tuning Voltage, Vcc= +5V


Sensitivity vs. Tuning Voltage, Vcc= +5V


Output Power vs. Tuning Voltage, Vcc= +5V

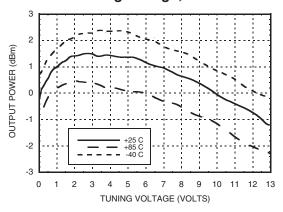
SSB Phase Noise vs. Tuning Voltage


SSB Phase Noise @ Vtune= 5V

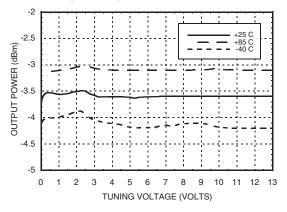


RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Frequency vs. Tuning Voltage, Vcc= +5V



Absolute Maximum Ratings


Vcc (RF), Vcc (DIG)	+5.5V
Vtune	0 to +15V
Junction Temperature	135° C
Continuous Pdiss (T= 85 °C) (derate 23 mW/° above 85 °C)	1.2 W
Thermal Resistance (junction to ground paddle)	43 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

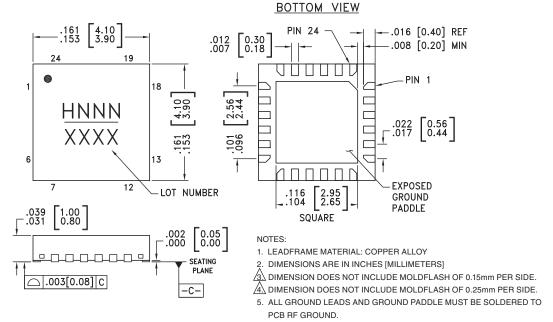
RFOUT/2 Output Power Power vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Output Power vs. Tuning Voltage, Vcc= +5V

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	175
5.0	200
5.25	220

Note: VCO will operate over full voltage range shown above.


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Outline Drawing

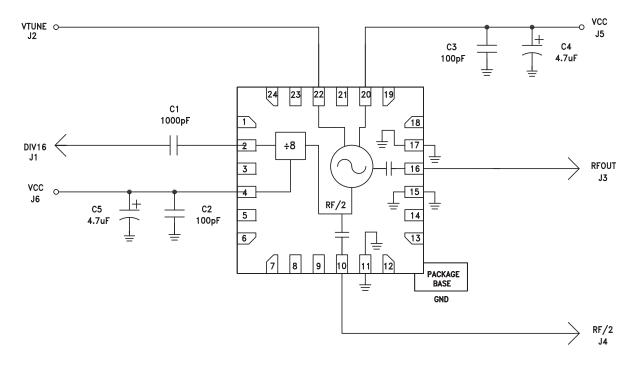
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC738LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H738 XXXX
HMC738LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H738 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 21, 23, 24	N/C	No Connection required. These pins may be connected to RF/DC ground without affecting performance.	
2	RFOUT/16	RF/16 Divided Output. Requires DC Block.	5V RFOUT/16
4	Vcc (DIG)	Supply voltage for prescaler. Can be omitted if prescaler is not needed to conserve approximately 100 mA.	Vcco (DIG) ∃gpF ∃

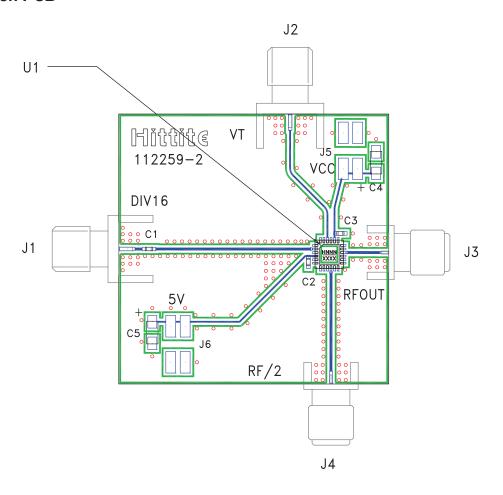


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
10	RFOUT/2	Half frequency output (AC coupled)	├─○ RFOUT/2
11, 15, 17	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	GND =
16	RFOUT	RF output (AC coupled).	RFOUT
20	Vcc (RF)	Supply Voltage	Veco (RF) 34pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	1.5nH 250Ω VTUNE 0 4.0pF 3.8pF

Typical Application Circuit



RoHS√ (E)

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Evaluation PCB

v02.0309

List of Materials for Evaluation PCB 112261 [1]

Item	Description
J1, J2	PCB Mount SMA RF Connector
J3	PCB Mount K-Connector
J4	PCB Mount SRI SMA Connector
J5 - J6	2 mm SMT 8 Pin Molex Header
C1	1,000 pF Capacitor, 0402 Pkg.
C2, C3	100 pF Capacitor, 0402 Pkg.
C4, C5	4.7 μF Tantalum Capacitor
U1	HMC738LP4(E)
PCB [2]	112259 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350