
410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Typical Applications

The HMC931LP4E is ideal for:

- EW Receivers
- · Military Radar
- Test Equipment
- Satellite Communications
- Beam Forming Modules

Functional Diagram

Features

Wide Bandwidth: 8 - 12 GHz

410° Phase Shift

Low Insertion Loss: 3.5 dB

Low Phase Error: +12 / -7 deg Typ.

Single Positive Voltage Control

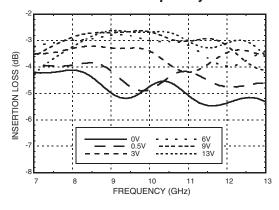
24 Lead 4x4 mm QFN Package: 16 mm²

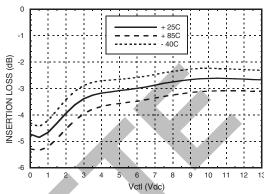
General Description

The HMC931LP4E is an Analog Phase Shifter which is controlled via an analog control voltage from 0 to +13V. The HMC931LP4E provides a continuously variable phase shift of 0 to 410 degrees from 8 to 12 GHz, with extremely consistent low insertion loss versus phase shift and frequency. The high accuracy HMC931LP4E is monotonic with respect to control voltage and features a typical low phase error of +12 / -7 degrees over a wide bandwidth. The HMC931LP4E is housed in an RoHS compliant 4x4 mm QFN leadless package.

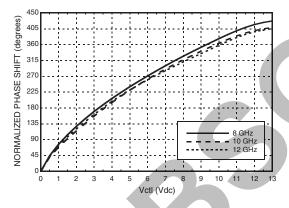
Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System

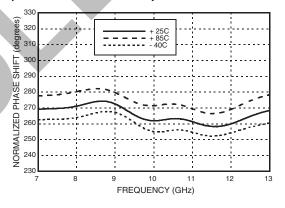
Parameter	Min.	Тур.	Max.	Units
Frequency Range	8		12	GHz
Phase Shift Range		410		deg
Insertion Loss		3.5		dB
Return Loss (input and output)		12		dB
Control Voltage Range	0		13	V
Control Current Range			± 1	mA
Input IP3		32		dBm
Input Power @ - 5° Shift In Insertion Phase (Vctl = 0V)		11.2		dBm
Input Power @ - 2° Shift In Insertion Phase (Vctl = 0.5V)		12		dBm
Phase Voltage Sensitivity		32		deg/V
Phase Error (peak) *		+15 / -7		deg
Phase Error (average) *		+12 / -1		deg
Modulation Bandwidth		50		MHz
Insertion Phase Temperature Sensitivity		0.12		deg/°C

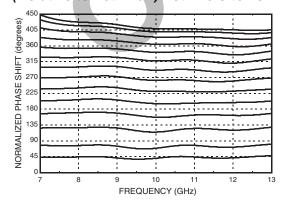

^{*} Up to a phase shift range of 360 degrees.

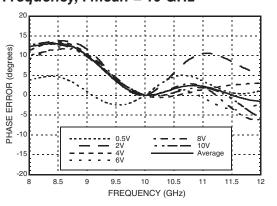


410° ANALOG PHASE SHIFTER, 8 - 12 GHz


Insertion Loss vs. Frequency

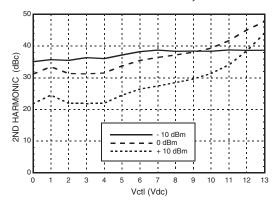

Insertion Loss vs. Vctl , F = 10 GHz

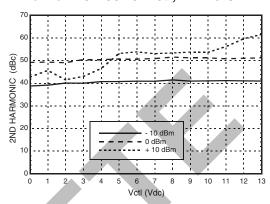

Phase Shift vs. Vctl


Phase Shift vs. Frequency @ Vctl = 6V (Relative to Vctl = 0V)

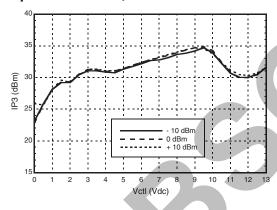
Phase Shift vs. Frequency (Relative to Vctl = 0V) Vctl = 0.5 to 13V

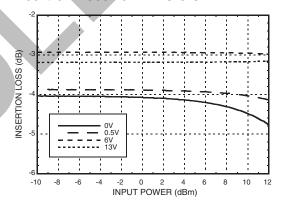
Phase Error vs.
Frequency, Fmean = 10 GHz [1]

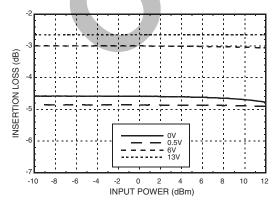

[1] 0 to 10V provides 0 - 360 degrees phase shift range

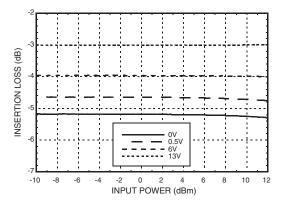


410° ANALOG PHASE SHIFTER, 8 - 12 GHz


Second Harmonics vs. Vctl, F = 10 GHz

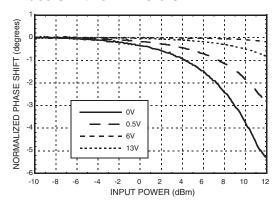

Third Harmonics vs. Vctl, F = 10 GHz

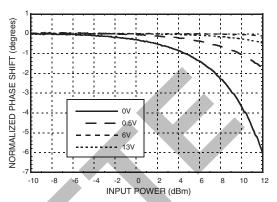

Input IP3 vs. VctI, F = 10 GHz


Insertion Loss vs. Pin @ 8 GHz

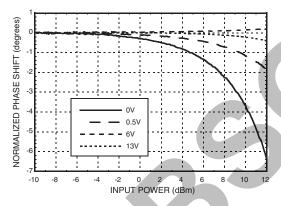
Insertion Loss vs. Pin @ 10 GHz

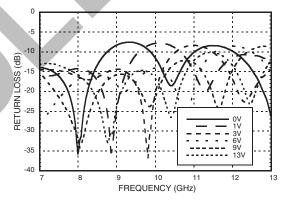
Insertion Loss vs. Pin @ 12 GHz

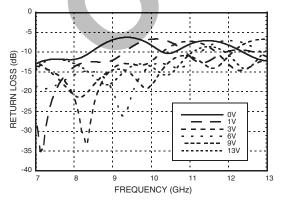




410° ANALOG PHASE SHIFTER, 8 - 12 GHz


Phase Shift vs. Pin @ 8 GHz


Phase Shift vs. Pin @ 10 GHz


Phase Shift vs. Pin @ 12 GHz

Input Return Loss vs. Frequency, Vctl = 0 to +13V

Output Return Loss vs. Frequency, Vctl = 0 to +13V

Reliability Information

Junction Temperature (Tj)	150 °C
Nominal Junction Temperature (T = 85 °C, Pin = 10 dBm)	87 °C
Thermal Resistance (Junction to GND Paddle)	80 °C/W
Operating Temperature	-40 to +85 °C

Absolute Maximum Ratings

Input Power (RFIN)	+26 dBm	
Control Voltage (Vctl)	-0.5V to +15V	
Storage Temperature	-65 to +150 °C	
ESD Sensitivity (HBM)	Class 1B	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Outline Drawing

BOTTOM VIEW PIN 24 -.016 [0.40] REF 0.30 .008 [0.20] MIN 19 PIN 1 H931 XXXX EXPOSED LOT NUMBER GROUND PADDLE SQUARE .002 .000 0.05 NOTES: 1. LEADFRAME MATERIAL: COPPER ALLOY

SEATING

PLANE

-C-

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 3. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 4. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 6. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

Package Information

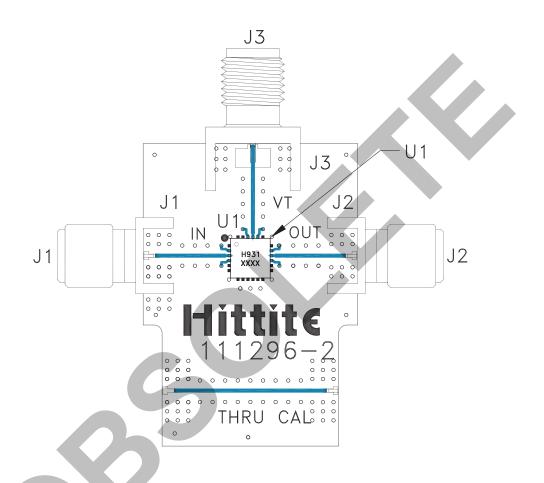
.003[0.08]|C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC931LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H931</u> XXXX

^{[1] 4-}Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 5 - 14, 18 - 20, 22 - 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.		
2, 4, 15, 17	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	GND =	
3	RFIN	Port is DC blocked.	RFIN ○──	
16	RFOUT	Port is DC blocked.	— —○ RFOUT	
21	Vctl	Phase shift control pin. Application of a voltage between 0 and 13 volts causes the transmission phase to change. The DC equivalent circuit is a series connected diode and resistor.	Vctl 10nH 2000 12.8 pF 12pF	


^[2] Max peak reflow temperature of 260 °C

410° ANALOG PHASE SHIFTER, 8 - 12 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108812 [1]

Item	Description	
J1, J2	PCB Mount SMA Connector, SRI	
J3	PCB Mount SMA Connector	
U1	HMC931LP4E Analog Phase Shifter	
PCB [2]	111296 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350