Evaluation Board User Guide
UG-492

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluating the iCoupler ADuM4470, ADuM4471, ADuM4472, ADuM4473, and ADuM4474 Isolated Switching Regulators with Integrated Feedback

FEATURES

ADuM447x circuits, including 5 kV rms isolated dc-to-dc converters
Single supply (default)
5 V input to 5 V output (regulated)
Reconfigurable to 5 V input to 3.3 V output or
3.3 V input to 3.3 V output

Double supply
5 V input to 15 V output (regulated) and 7.5 V output (unregulated)
Reconfigurable to 5 V input to 12 V output (regulated) and 6 V output (unregulated)
Footprints for Coilcraft, Inc., and Halo Electronics, Inc., transformer options
Multiple switching frequency options
SUPPORTED iCoupler MODELS
ADuM4470
ADuM4471
ADuM4472
ADuM4473
ADuM4474

GENERAL DESCRIPTION

The EVAL-ADuM4471EBZ board can be used for different applications of the ADuM447x i Coupler isolated switching regulators. With the ability to be configured as a circuit with either single- (default) or double-supply output, the board supports a variety of input/output configurations and multiple transformer options. It is equipped with an ADuM4471 switching regulator (ADuM4471ARIZ) for voltage isolation, but can also be used with ADuM4470ARIZ, ADuM4472ARIZ, ADuM4473ARIZ, or ADuM4474ARIZ. The regulator features integrated feedback and a switching frequency that can be set from 200 kHz to 1000 kHz .
This user guide provides all the necessary details to set up and use the EVAL-ADuM4471EBZ board. Although the EVAL-ADuM4471EBZ comes with the ADuM4471 switching regulator on board, the printed circuit board (PCB) is designed for compatibility with the entire ADuM447x family. Additional information about the supported i Coupler devices is available in the ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474 data sheet, which should be consulted in conjunction with this user guide when using the EVAL-ADuM4471EBZ board.

Figure 1. Single-Supply and Double-Supply Configurations

TABLE OF CONTENTS

Features 1
Supported iCoupler Models 1
General Description 1
EVAL-ADuM4471EBZ Board Photograph 1
Revision History 2
Configuring the Board for Single- or Double-Supply Output ... 3
Single Supply 4
Terminals 4
Transformer Selection 5
Switching Frequency Options 5
REVISION HISTORY
6/13-Revision 0: Initial Version

Evaluation Board User Guide

CONFIGURING THE BOARD FOR SINGLE- OR DOUBLE-SUPPLY OUTPUT

The EVAL-ADuM4471EBZ board can be configured for an isolated circuit with either single- or double-supply output. See Table 1 for information about the setup of the feedback divider resistors for the single- and double-supply configurations. For additional applications information about the supported i Coupler devices in these configurations, see the ADuM4470/ADuM4471/ ADuM4472/ADuM4473/ADuM4474 data sheet. Figure 12 and Figure 13 shows the schematics for the EVAL-ADuM4471EBZ board in single- and double-supply configurations.

Table 1. Feedback Divider Resistors Configuration

Configuration	R6	R10	R11	R15
3.3 V Single	$17.4 \mathrm{k} \Omega$	0Ω	$14.3 \mathrm{k} \Omega$	$10.5 \mathrm{k} \Omega$
5 V Single	$17.4 \mathrm{k} \Omega$	Open	$14.3 \mathrm{k} \Omega$	$10.5 \mathrm{k} \Omega$
12 V Double	$90.9 \mathrm{k} \Omega$	0Ω	$24.9 \mathrm{k} \Omega$	$10.5 \mathrm{k} \Omega$
15 V Double	$90.9 \mathrm{k} \Omega$	Open	$24.9 \mathrm{k} \Omega$	$10.5 \mathrm{k} \Omega$

The single- or double-supply configuration can be selected by changing the output mode resistor values as described in Table 2.

Table 2. Output Mode Resistors Configuration

Configuration	R5	R7	R8	R9	R19
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Single	Open	0Ω	Open	0Ω	0Ω
$12 \mathrm{~V} / 15 \mathrm{~V}$ Double	0Ω	Open	0Ω	Open	Open
$\pm 15 \mathrm{~V}$ Double	Open	0Ω	Open	0Ω	Open

After setting the feedback divider and output mode resistors, refer to the Single Supply or Double Supply section for additional information about configuring the EVAL-ADuM4471EBZ board.

SINGLE SUPPLY

The ADuM4471 switching regulator on this evaluation board can be configured for single-supply output. When the switching regulator is set to single-supply mode, the feedback divider resistors should be configured as described in Table 1 and the output mode resistors should be configured as described in Table 2.
By default, the single-supply configuration provides a 5 V secondary isolated supply with a 5 V primary input supply, which can provide up to 2.5 W of regulated, isolated power. The single supply can be reconfigured as a 3.3 V secondary isolated supply with a 5 V or 3.3 V primary input supply. See the Other Input and Isolated Output Supply Options section for more information.

TERMINALS

In the single-supply configuration, the EVAL-ADuM4471EBZ board has terminal blocks on Side 1 (the primary/power supply input side) and Side 2 (the secondary/power supply output side). An 8.0 mm isolation barrier separates Side 1 from Side 2. Figure 2 shows the location of these terminals.

Table 3 summarizes the functions of the terminal connections. These connections are described in more detail in the Input Power Connections and Output Power Connections sections.

Input Power Connections

Connect 5 V to P1, labeled 5 V (or connect 3.3 V to P 1 for a 3.3 V primary input supply with a 3.3 V secondary isolated supply). Connect the negative end of the supply to P 2 , labeled GND. These are the only off-board connections required for the board to function in single-supply configuration.
Connect the 5 V input supplies ($\mathrm{V}_{\mathrm{DDI}}$ and $\mathrm{V}_{\mathrm{DDA}}$) to the ADuM4471 (U1) in single-supply configuration. $\mathrm{V}_{\mathrm{DD} 1}$ is the ADuM4471 transformer driver supply, and VDDA is the primary supply voltage (see the ADuM4470/ADuM4471/ADuM4472/ ADuM4473/ADuM4474 data sheet for additional information). $V_{\text {DDI }}$ and $V_{\text {DDA }}$ are bypassed by a $47 \mu \mathrm{~F}$ ceramic capacitor (C3) and a $0.1 \mu \mathrm{~F}$ local bypass capacitor (C 8) located close to the ADuM4471. R4, R3, C4, and C5 are provided for an optional and unpopulated snubber, which can be used to reduce radiated emissions.

Power is transferred to Side 2 by a regulated push-pull converter, comprising the ADuM4471 (U1), an external transformer (T2 or T3), and other components (see the ADuM4470/ADuM4471/ ADuM4472/ADuM4473/ADuM4474 data sheet for an explanation of this circuit functionality).

Table 3. Single-Supply Terminal Function Descriptions

Terminal	Label	Description
P1	5 V	Side 1-5 V primary input supply
P2	GND	Side 1-ground reference
P7	OUT1	Side 2-5V secondary isolated supply
P8	ISO_GND	Side 2-ground reference

Figure 2. Single-Supply and Double-Supply Board Terminals

Output Power Connections

An output load can be connected to P7, labeled OUT1, which is the isolated, regulated 5 V output supply. Connect the return of the load to P8, labeled ISO_GND, which is the Side 2 ground reference. Including the current necessary for the ADuM4471 secondary side (I/O and pulse-width modulation control), this supply can provide up to 500 mA in the default configuration-a 5 V primary input supply with a 5 V secondary isolated supply. The isolated data channels on Side 2 load the secondary isolated supply and reduce the total available current. Figure 4 through Figure 7 show how the efficiency of the power supply varies with load current, switching frequency, and temperature.
Care must be taken to avoid driving an output pin with an external voltage because this can result in permanent damage to the ADuM4471.

Data I/O Connection

The EVAL-ADuM4471EBZ supports a variety of I/O configurations. The user has access to all four of the ADuM4471 digital isolation channels via the terminals. With an ADuM4471 populated, I/O1 through I/O3 are inputs on Side 1 and outputs on Side 2. I/O4 is an output on Side 1 and an input on Side 2. Table 4 identifies the ADuM4471 pins to which I/Ox are connected.

Populating J6 allows the user to connect the ADuM4471 VIA input directly to a 50Ω signal source. R30 must be shorted with a 0Ω resistor to connect the SMA to V_{IA}. R27, R28, and R29 allow the user to implement various I/O interconnection schemes. For example, soldering $0 \Omega, 0805$ resistors to R27 and R28 ties $\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}}$, and V_{IC} together.
Note that R29 must not be populated if an external signal source is applied to I/O3. This can cause permanent damage to the ADuM4471 because an output pin is being driven. R29 can be used to connect $V_{\text {IC }}$ to $V_{\text {Od }}$ so that $V_{\text {OD }}$ drives $V_{\text {IC }}$. C9 through C 11 and C13 should not be populated when an ADuM4471 is equipped. C12, C14, C15, and C16 are 0603 pads for optional and unpopulated loads for the data outputs.
The PCB is designed for compatibility with the entire ADuM447x family. If another ADuM447x replaces the ADuM4471, other I/O interconnection schemes are possible. See the ADuM4470/ ADuM4471/ADuM4472/ADuM4473/ADuM4474 data sheet for the pin descriptions of these configurations. These changes are at the discretion of the user. Care must be taken to avoid driving an output pin with an external voltage because this can result in permanent damage to the switching regulator.

Table 4. Single-Supply Terminal Connections

Terminal	Pin	Mnemonic	ADuM4471 Connection	
			Pin	Description
J6	1	+5 V IN	VDDA	Side 1-5 V primary input supply
	2	I/O1	$V_{\text {IA }}$	Side 1-Logic Input A
	3	I/O2	$V_{\text {I }}$	Side 1-Logic Input B
	4	1/03	VIC	Side 1-Logic Input C
	5	I/O4	Vod	Side 1-Logic Output D
	6	GND	GND_{1}	Side 1-ground reference
J8	N/A	N/A	$\mathrm{V}_{\text {IA }}$	Side 1-SMA connector to J6, I/O1
J7	1	+5V/3.3V	$\mathrm{V}_{\mathrm{DD} 2}$	Side 2-5 V secondary isolated supply
	2	I/O1	$V_{\text {OA }}$	Side 2-Logic Output A
	3	I/O2	$V_{\text {ов }}$	Side 2-Logic Output B
	4	I/O3	Voc	Side 2-Logic Output C
	5	I/O4	V_{10}	Side 2-Logic Input D
	6	GND ISO	GND_{2}	Side 2-ground reference

TRANSFORMER SELECTION

The EVAL-ADuM4471EBZ board supports multiple transformer options. In the single-supply configuration, the board is equipped with a Halo Electronics TGRAD-560V8LF (T2) or a Coilcraft CR7983-CL (T3) 1CT:2CT turns ratio transformer; the default is the Coilcraft transformer. The Halo Electronics footprint is in the middle of the Coilcraft footprint. Figure 4 and Figure 6 show the efficiency curves when the board operates in single-supply configuration using a Coilcraft transformer (CR7983-CL) and a Halo Electronics (TGRAD-560V8LF) transformer, respectively.

SWITCHING FREQUENCY OPTIONS

The resistance connected from the ADuM4471 oscillator control pin (OC) to ground sets the single-supply switching frequency. Figure 3 shows the relationship between this resistance and the converter switching frequency. The EVAL-ADuM4471EBZ can be configured with $0 \Omega, 0603$ resistors to set one of four preset switching frequencies. Table 5 lists the switching frequencies that can be selected by short- or open-circuiting R12, R13, and R14.
The user can select a different switching frequency by removing R12 and R13 and then choosing R18 based on Figure 3. The board is configured for the 500 kHz setting by default. Figure 4 and Figure 6 show how the switching frequency affects the efficiency of the supply using a Coilcraft transformer (CR7983-CL) and a Halo Electronics transformer (TGRAD-560V8LF), respectively. Figure 5 shows how the efficiency curves vary over temperature with a 500 kHz switching frequency.

Table 5. Switching Frequency Selection

$\mathbf{R 1 2}$	R13	R14	$\mathbf{R o c}$	Switching Frequency (fsw)
0Ω	Open	Open	$300 \mathrm{k} \Omega$	200 kHz
Open	Open	0Ω	$100 \mathrm{k} \Omega$	500 kHz (default)
0Ω	Open	0Ω	$75 \mathrm{k} \Omega$	700 kHz
0Ω	0Ω	0Ω	$50 \mathrm{k} \Omega$	1 MHz

NOTES

1. R_{Oc} IS A CALCULATED VALUE BASED ON THE SELECTION OF R12, R13, AND R14.

Figure 3. Switching Frequency ($f_{s w}$) vs. Oscillator Resistance (Roc)

OTHER INPUT AND ISOLATED OUTPUT SUPPLY OPTIONS

In the single-supply configuration, the board can be set up to have a 3.3 V secondary isolated supply with a 3.3 V or 5 V primary input supply. Short-circuiting R10 by soldering a $0 \Omega, 0603$ resistor to R9 sets the output supply to 3.3 V . The voltage at the feedback node (the FB pin of the ADuM4471) should be the desired output voltage divided to approximately 1.25 V . Having R10 open-circuited sets the secondary isolated supply to 5 V , and having R10 shortcircuited sets the supply to 3.3 V . See the ADuM4470/ADuM4471/ ADuM4472/ADuM4473/ADuM4474 data sheet for more information about setting the secondary isolated output supply voltage. Figure 7 shows how the efficiency curves change in single-supply configuration when the board is reconfigured by open- or short-circuiting R10.

Figure 4.5 V Input to 5 V Output Efficiency Using a 1CT:2CT Coilcraft Transformer (CR7983-CL) at Various Switching Frequencies

Figure 5.5 VInput to 5 V Output Efficiency Using a 1CT:2CT Coilcraft Transformer (CR7983-CL) at 500 kHz and Various Temperatures

Figure 6. 5 V Input to 5 V Output Efficiency Using a 1CT:2CT Halo Electronics Transformer (TGRAD-560V8LF) at Various Switching Frequencies

Figure 7. Single-Supply Efficiency for Various Output Configurations Using a 1CT:2CT Coilcraft Transformer (CR7983-CL) at 500 kHz

DOUBLE SUPPLY

The ADuM4471 switching regulator on this evaluation board can be configured for double-supply output (for more information about the transformer, see the Transformer Selection section). When the ADuM4471 is set to double-supply mode, the feedback divider resistors should be configured as described in Table 1 and the output mode resistors should be configured as described in Table 2.
By default, the double-supply configuration provides a regulated 15 V output and an unregulated 7.5 V output, which are isolated from the 5 V primary input supply. The double supply is capable of delivering up to 140 mA to external loads. The isolated data channels on Side 2 load the secondary isolated supply and reduce the total available current. The double supply can be reconfigured as 12 V (regulated) and 6 V (unregulated) secondary isolated supplies or as positive and negative supplies. See the Other Secondary Isolated Supply Configurations section for more information.

TERMINALS

In the double-supply configuration, the EVAL-ADuM4471EBZ board has terminal blocks on Side 1 (the primary/power supply input side) and Side 2 (the secondary/power supply output side). An 8.0 mm isolation barrier separates Side 1 from Side 2. Table 6 summarizes the functions of the terminal connections. These connections are described in detail in the Input Power Connections and Output Power Connections sections.

Table 6. Double-Supply Terminal Function Descriptions
\(\left.\begin{array}{l|l|l}\hline Terminal \& Label \& Description

\hline P1 \& 5V \& Side 1-5 V primary input supply

P2 \& GND \& Side 1-ground reference\end{array}\right]\)| P9 | OUT2 | Side $2-7.5 \mathrm{~V}$ secondary isolated supply
 (unregulated)
 P10 |
| :--- | :--- | :--- |
| ISO_GND | Side 2-ground reference | |

Input Power Connections

Connect 5 V to P1 (labeled 5V), and connect the negative end of the supply to P2 (labeled GND). These are the only off-board connections required for the board to function in double-supply configuration.
Connect the 5 V input supplies ($\mathrm{V}_{\mathrm{DDI}}$ and $\mathrm{V}_{\mathrm{DDA}}$) to the ADuM4471 (U1) in double-supply configuration. $\mathrm{V}_{\mathrm{DDI}}$ is the ADuM4471 transformer driver supply, and VDDA is the primary supply voltage (see the ADuM4470/ADuM4471/ADuM4472/ ADuM4473/ADuM4474 data sheet for additional information).
$\mathrm{V}_{\mathrm{DDI}}$ and $\mathrm{V}_{\mathrm{DDA}}$ are bypassed by a $47 \mu \mathrm{~F}$ ceramic capacitor (C3) and a $0.1 \mu \mathrm{~F}$ local bypass capacitor (C8) located close to the ADuM4471. R4, R3, C4, and C5 are provided for an optional and unpopulated snubber, which can be used to reduce radiated emissions.

Output Power Connections

Output loads can be connected to P9 (labeled OUT2) and P7 (labeled OUT1), which are the isolated, unregulated 7.5 V and regulated 15 V output supplies, respectively. Connect the return of the load to P10 and P8, which are labeled ISO_GND.
Side 2 is powered by the secondary isolated 15 V supply. The ADuM4471 internal low dropout regulator converts this voltage to 5 V . The regulated 5 V supply powers the $\mathrm{ADuM4471}$ secondary side. Therefore, the ADuM4471 $\mathrm{V}_{\text {reg }}$ pin is 15 V , and the $\mathrm{V}_{\mathrm{dD} 2}$ pin is 5 V . The 15 V supply connects to P7 (labeled OUT1). The 7.5 V supply connects to P9 (labeled OUT2). The Side 2 ground reference is tied to P10. See the ADuM4470/ADuM4471/ ADuM4472/ADuM4473/ADuM4474 data sheet for an explanation of the double-supply theory of operation. Figure 8 through Figure 11 show efficiency curves for the double supply with the 15 V or 12 V isolated output supply connected to $\mathrm{V}_{\text {reg. }}$.

Powering $V_{\text {REG }}$ from the Unregulated 7.5 V Supply

$\mathrm{V}_{\text {REG }}$ can be powered from the unregulated 7.5 V supply, which results in higher efficiency. However, when the 15 V supply is unloaded, the unregulated 7.5 V supply is approximately 3 V , which is insufficient for powering the ADuM4471 secondary side. This causes the double supply to run open-loop, leaving the 15 V supply unregulated. Using 15 V for $\mathrm{V}_{\text {Reg }}$ ensures that the secondary side of the ADuM4471 powers up under light load conditions. Move the $0 \Omega, 0603$ resistor from R8 to R9 to power Side 2 from the 7.5 V supply.

Care must be taken to avoid driving an output pin because this can result in permanent damage to the ADuM4471.

TRANSFORMER SELECTION

The EVAL-ADuM4471EBZ supports multiple transformer options. In the double-supply configuration, the board must be equipped with a Halo Electronics TGRAD-560V8LF (T2) or a Coilcraft CR7983-CL (T3) 1CT:3CT turns ratio transformer (see the ADuM4470/ADuM4471/ADuM4472/ADuM4473/ ADuM4474 data sheet for details on transformer selection with the ADuM4471). Figure 8 and Figure 10 show the efficiency of the supply using a 1CT:3CT Coilcraft transformer (CR7983CL) and a 1CT:3CT Halo Electronics transformer (TGRAD560V8LF), respectively, at various switching frequencies. Figure 9 shows how temperature affects efficiency.

SWITCHING FREQUENCY OPTIONS

The resistance connected from the ADuM4471 oscillator control pin (OC) to ground sets the double-supply switching frequency. Figure 3 shows the relationship between this resistance and the converter switching frequency. The EVALADuM4471EBZ board can be configured with $0 \Omega, 0603$ resistors to set one of four preset switching frequencies. Table 7 lists the switching frequencies that can be selected by short- or opencircuiting R12, R13, and R14.
The user can select a different switching frequency by removing R12 and R13 and then choosing R18 based on Figure 3. The board is configured for the 500 kHz setting by default. Figure 8 and Figure 10 show how the switching frequency affects the efficiency of the supply using a Coilcraft transformer (CR7983-CL) and a Halo Electronics transformer (TGRAD-560V8LF), respectively.

Table 7. Switching Frequency Selection

$\mathbf{R 1 2}$	$\mathbf{R 1 3}$	R14	Roc	Switching Frequency (fsw)
0Ω	Open	Open	$300 \mathrm{k} \Omega$	200 kHz
Open	Open	0Ω	$100 \mathrm{k} \Omega$	500 kHz (default)
0Ω	Open	0Ω	$75 \mathrm{k} \Omega$	700 kHz
0Ω	0Ω	0Ω	$50 \mathrm{k} \Omega$	1 MHz

Figure 8. 5 V Input to 15 V Output Efficiency Using a 1CT:3CT Coilcraft Transformer (CR7983-CL) at Various Switching Frequencies

Figure 9. 5 V Input to 15 V Output Efficiency Using a 1CT:3CT Coilcraft Transformer (CR7983-CL) at 500 kHz and Various Temperatures

Figure 10.5 V Input to 15 V Output Efficiency Using a 1CT:3CTHalo Electronics Transformer (TGRAD-560V8LF) at Various Switching Frequencies

Figure 11. Double-Supply Efficiency for Various Output Configurations Using a 1CT:5CT Coilcraft Transformer (CR7983-CL) at 500 kHz

OTHER SECONDARY ISOLATED SUPPLY CONFIGURATIONS

In the double-supply configuration, the EVAL-ADuM4471EBZ board can be configured to have 12 V regulated and 6 V unregulated secondary isolated supplies by short-circuiting R11 with a 0Ω resistor for R10. The regulated supply voltage is set by the fraction of the supply that is fed back to the ADuM4471 via the voltage divider comprising R6, R11, R15, and R10. The voltage at the feedback pin (FB) is 1.25 V . With R10 open-circuited, the ADuM4471 feedback voltage is approximately 1.25 V if $\mathrm{V}_{\text {ISo }}$ is 15 V . When R10 is short-circuited, the feedback voltage is approximately 1.25 V if $\mathrm{V}_{\text {Iso }}$ is 12 V (see the ADuM4470/ ADuM4471/ADuM4472/ADuM4473/ADuM4474 data sheet for more information about setting the secondary isolated output supply voltage). Figure 11 shows the efficiency curves for both output settings at 500 kHz using a Coilcraft transformer (CR7983-CL).

Positive and Negative Outputs

In the double-supply configuration, the EVAL-ADuM4471EBZ board can be set up to have a positive and negative $\pm 15 \mathrm{~V}$ supply by changing the transformer to a turns ratio 1CT:5CT transformer (see the ADuM4470/ADuM4471/ADuM4472/ADuM4473/ ADuM4474 data sheet for more information about these transformers). Other changes begin with removing the 0Ω resistors from R5 and R8 and inserting them into R7 and R9. Short-circuiting R2 instead of R1 changes the unregulated 7.5 V supply into a -15 V supply. Short-circuiting R5 instead of R7
connects the transformer center tap to the ground plane instead of the node where L2 and C2 are connected. Note that the negative supply is unregulated. The positive and negative supplies can be set for $\pm 12 \mathrm{~V}$ instead of $\pm 15 \mathrm{~V}$ by short-circuiting R10.
Although the +15 V output can be regulated, the same problems with regulation can occur as described in the Powering $V_{\text {reg }}$ from the Unregulated 7.5 V Supply section. In addition, the -15 V supply can vary over a wide range because it is unregulated and influenced by the changes that occur on the +15 V output.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 12. Evaluation Board Schematic, Page 1

Figure 13. Evaluation Board Schematic, Page 2

EVALUATION BOARD LAYOUT

Figure 14. Top Layer: Ground Fill

Figure 15. Bottom Layer: Ground Fill

BILL OF MATERIALS

Table 8. EVAL-ADuM4471EBZ Bill of Materials

Qty	Reference Designator	Description	Supplier/Part Number
1	U1 ${ }^{1}$	Isolated switching regulator with integrated feedback	Analog Devices, Inc./ADuM4471ARIZ
4	D1 to D4	Schottky barrier rectifier, 0.5 A, $40 \mathrm{~V}, \mathrm{SMD}$, SOD-123	ON Semiconductor/MBR0540
1	T2 ${ }^{2}$	Transformer, 1CT:2CT turns ratio, SMD (not populated)	Halo Electronics/TGRAD-560V8LF
1	T3 ${ }^{2}$	Transformer, 1CT:2CT turns ratio, SMD	Coilcraft/CR7983-CL
3	C1, C2, C3	Capacitor, ceramic, X7R, SMD, 1210, $47 \mu \mathrm{~F}, 20 \%$, 10 V	Murata/GRM32ER71A476KE15L
10	C4, C5, C9 to C12, C13 to C16	Capacitor, ceramic, SMD, 0603 (not populated)	N/A
3	C6, C7, C8	Capacitor, ceramic, X7R, SMD, 0603, $0.1 \mu \mathrm{~F}$	AVX/0603YC104KAT2A
2	L1, L2	Inductor, SMD, 2424, $47 \mu \mathrm{H}, 20 \%, 0.17 \Omega$	Murata/LQH6PPN470M43
2	L3, L4	Inductor, SMD, 1212, $47 \mu \mathrm{H}, 20 \%, 1.25 \Omega$	Murata/LQH3NPN470MM0
6	R1, R7, R9, R11, R14, R19	Resistor chip, SMD, 0805, 0 , 1/8 W	Panasonic/ECG/ERJ-6GEYOROOV
8	R2, R3, R4, R5, R8, R10, R12, R13	Not populated	N/A
1	R6	Resistor chip, SMD, 0805, $14.3 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1432V
1	R16	Resistor chip, SMD, 0805, $300 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Yageo/RC0805FR-07300KL
1	R17	Resistor chip, SMD, 0805, $150 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Yageo/RC0805FR-07150KL
1	R18	Resistor chip, SMD, 0805, $100 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1003V
1	R15	Resistor chip, SMD, 0805, $10.5 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1052V
1	R11	Resistor chip, SMD, 0805, $17.4 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1742V
2	R31, R32	Resistor chip, SMD 1210, 100 , 1/2 W	Panasonic/ECG/ERJ-14NF50R0V
5	P1, P3, P5, P7, P9	Test point, red	Components Corp./TP-104 series
5	P2, P4, P6, P8, P10	Test point, black	Components Corp./TP-104 series
2	J6, J7	CON-PCB terminal, 6×1 header, 0.1 inch spacing	Sullins Connector Solutions
1	J8	CON-PCB, SMA (not populated)	N/A

${ }^{1}$ Alternatively, U1 can be populated with ADuM4470ARIZ, ADuM4472ARIZ, ADuM4473ARIZ, or ADuM4474ARIZ.
${ }^{2}$ The board can be populated with either a Coilcraft transformer or a Halo Electronics transformer. Do not populate both T2 and T3.

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.
www.analog.com

