FEATURES

Monolithic 12-Bit 10 MSPS A/D Converter Low Noise: 0.26 LSB RMS Referred-to-Input No Missing Codes Guaranteed
Differential Nonlinearity Error: 0.5 LSB
Signal-to-Noise and Distortion Ratio: 68 dB
Spurious-Free Dynamic Range: 75 dB
Power Dissipation: 1.03 W
Complete: On-Chip Track-and-Hold Amplifier and Voltage Reference
Twos Complement Binary Output Data Out-of-Range Indicator
28-Lead Ceramic DIP or 44-Terminal Leadless Chip Carrier Package

FUNCTIONAL BLOCK DIAGRAM

*ONLY AVAILABLE ON 44-TERMINAL SURFACE MOUNT PACKAGE

The AD 872A is fabricated on A nalog D evices' ABCM O S-I process that utilizes high speed bipolar and CM OS transistors on a single chip.
The AD 872A is packaged in a 28 -lead ceramic DIP and a 44 terminal leadless ceramic surface mount package (LCC). O peration is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PRODUCT HIGHLIGHTS

The AD 872A offers a complete single-chip sampling, 12-bit 10 M SPS analog-to-digital conversion function in a 28-lead DIP or 44-terminal LCC.
L ow N oise-The AD 872A features 0.26 LSB rms referred toinput noise.

Low Power-The AD 872A at 1.03 W consumes a fraction of the power of presently available hybrids.

On-Chip Track-and-H old (T/H) - The low noise, high impedance T / H input eliminates the need for external buffers and can be configured for single-ended or differential inputs.

Ease of Use-The AD 872A is complete with T/H and voltage reference and is pin-compatible with the AD 872.

O ut of Range (OTR) - The OTR output bit indicates when the input signal is beyond the AD 872A's input range.

REV. A

[^0][^1]AD872A- SPECIFICATIONS
DC SPECIFICATIONS ($\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAx, }} \mathrm{AV}_{D D}=+5 \mathrm{~V}, D V_{D D}=+5 \mathrm{~V}, A V_{S S}=-5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=10 \mathrm{MHz}$ unless otherwise noted)

Parameter	J Grade ${ }^{1}$	S Grade ${ }^{1}$	Units
RESOLUTION	12	12	Bits min
MAX CONVERSION RATE	10	10	M Hz min
INPUT REFERRED NOISE	0.26	0.26	LSB rms typ
ACCURACY Integral N onlinearity (INL) Differential N onlinearity (DNL) No M issing Codes Zero Error $\left(@+25^{\circ} \mathrm{C}\right)^{2}$ Gain Error $\left(@+25^{\circ} \mathrm{C}\right)^{2}$	$\begin{aligned} & \pm 1.75 \\ & \pm 0.5 \\ & 12 \\ & \pm 0.75 \\ & \pm 1.25 \end{aligned}$	$\begin{aligned} & \pm 1.75 \\ & \pm 0.5 \\ & 12 \\ & \pm 0.75 \\ & \pm 1.25 \end{aligned}$	LSB typ LSB typ Bits Guaranteed \% FSR max \% FSR max
TEMPERATURE DRIFT Zero Error Gain Error ${ }^{3,4}$ Gain Error ${ }^{3,5}$	$\begin{aligned} & \pm 0.15 \\ & \pm 0.80 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 1.75 \\ & \pm 0.50 \end{aligned}$	\% FSR max \% FSR max \% FSR max
$\begin{aligned} & \text { POWER SUPPLY REJECTION }{ }^{6} \\ & A V_{D D}, D V_{D D}(+5 \mathrm{~V} \pm 0.25 \mathrm{~V}) \\ & A V_{S S}(-5 \mathrm{~V} \pm 0.25 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.125 \\ & \pm 0.125 \end{aligned}$	$\begin{array}{r} \pm 0.125 \\ \pm 0.125 \end{array}$	\% FSR max \% FSR max
ANALOG INPUT Input Range Input Resistance Input Capacitance	$\begin{aligned} & \pm 1.0 \\ & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & 50 \\ & 10 \end{aligned}$	V max $\mathrm{k} \Omega$ typ pF typ
INTERNAL VOLTAGE REFERENCE Output Voltage Output Voltage T olerance O utput C urrent (A vailable for External L oads) (External L oad Should N ot Change D uring Conversion)	$\begin{aligned} & 2.5 \\ & \pm 20 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \pm 40 \\ & 2.0 \end{aligned}$	V typ mV max mA typ
REFERENCEINPUT RESISTANCE	5	5	$\mathrm{k} \Omega$
POWER SUPPLIES Supply Voltages $A V_{D D}$ $A V_{S S}$ $D V_{D D}$ $D R V_{D D}{ }^{7}$ Supply Current IAV ${ }_{\text {DD }}$ $I A V_{S S}$ IDV IDRV ${ }_{D D}{ }^{7}$	$\begin{aligned} & +5 \\ & -5 \\ & +5 \\ & +5 \\ & \\ & 91 \\ & 147 \\ & 20 \\ & 2 \end{aligned}$	$\begin{aligned} & +5 \\ & -5 \\ & +5 \\ & +5 \\ & \\ & 92 \\ & 150 \\ & 21 \\ & 2 \end{aligned}$	$\mathrm{V}(\pm 5 \% \mathrm{AV}$ DD 0 perating) $\mathrm{V}(\pm 5 \% \mathrm{AV}$ SS Operating) V ($\pm 5 \%$ DV ${ }_{\text {DD }}$ Operating) V ($\pm 5 \%$ DRV ${ }_{\text {DD }}$ Operating) mA max (85 mA typ) $\mathrm{mA} \max (115 \mathrm{~mA}$ typ) mA max (7 mA typ) mA
POWER CONSUMPTION	$\begin{aligned} & 1.03 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.3 \end{aligned}$	W typ W max

[^2]AC SPECIFICATIONS ($\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX},} \mathrm{AV}_{D D}=+5 \mathrm{~V}, \mathrm{DV}_{D D}=+5 \mathrm{~V}, \mathrm{AV}_{S S}=-5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=10 \mathrm{MHz}$ unless otherwise noted $)^{1}$

Parameter	J Grade	S Grade	Units
$\begin{aligned} & \text { SIGNAL-TO-NOISE \& DISTORTION RATIO (S/N +D) } \\ & \mathrm{f}_{\text {INPUT }}=I \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\text {INPUT }}=4.99 \mathrm{M} \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 68 \\ & 61 \\ & 66 \end{aligned}$	$\begin{aligned} & 68 \\ & 61 \\ & 66 \end{aligned}$	dB typ $d B \min$ dB typ
$\begin{aligned} & \text { SIGNAL-TO-NOISE RATIO (SNR) } \\ & \mathrm{f}_{\text {INPUT }}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\text {INPUT }}=4.99 \mathrm{M} \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 69 \\ & 67 \end{aligned}$	$\begin{aligned} & 69 \\ & 67 \end{aligned}$	dB typ dB typ
```TOTAL HARMONIC DISTORTION (THD) finPut }=1\textrm{MHz finPut }=4.99 M H```	$\begin{aligned} & -74 \\ & -63 \\ & -72 \end{aligned}$	$\begin{aligned} & -74 \\ & -62 \\ & -72 \end{aligned}$	dB typ dB max dB typ
```SPURIOUS-FREE DYNAMIC RANGE (SFDR) \(\mathrm{f}_{\text {INPUT }}=1 \mathrm{MHz}\) \(\mathrm{f}_{\text {INPUT }}=4.99 \mathrm{M} \mathrm{Hz}\)```	$\begin{aligned} & 75 \\ & 74 \end{aligned}$	75 74	dB typ   dB typ
INTERMODULATION DISTORTION (IMD) ${ }^{2}$ Second Order Products Third Order Products	$\begin{aligned} & -80 \\ & -73 \end{aligned}$	$\begin{aligned} & -80 \\ & -73 \end{aligned}$	dB typ dB typ
FULL POWER BANDWIDTH	35	35	M Hz typ
SM ALL SIGNAL BANDWIDTH	35	35	M Hz typ
APERTURE DELAY		6	nstyp
APERTURE JITTER	16	16	ps rms typ
ACQUISITION TO FULL-SCALE STEP	40	40	ns typ
OVERVOLTAGE RECOVERY TIME	40	40	ns typ

NOTES
${ }^{1} f_{\text {INPUT }}$ amplitude $=-0.5 \mathrm{~dB}$ full scale unless otherwise indicated. All measurements referred to a $0 \mathrm{~dB}(1.0 \mathrm{~V} \mathrm{pk})$ input signal unless otherwise indicated.
${ }^{2} \mathrm{fa}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{fb}=0.95 \mathrm{M} \mathrm{Hz}$ with $\mathrm{t}_{\text {SAMPLE }}=10 \mathrm{MHz}$.
Specifications subject to change without notice.

DIG|TAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX},} A \mathrm{AV}_{D D}=+5 \mathrm{~V}, D V_{D D}=+5 \mathrm{~V}, \mathrm{AV}_{S S}=-5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=10 \mathrm{MHz}$ unless otherwise noted)

Parameter	Symbol	J, S Grades	Units
LOGIC INPUTS High Level Input Voltage Low Level Input Voltage High Level Input C urrent ($\mathrm{V}_{I N}=D V_{D D}$) L ow Level Input Current (V ${ }_{\text {IN }}=0 \mathrm{~V}$) Input C apacitance	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & I_{I H} \\ & I_{I L} \\ & C_{I N} \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.8 \\ & 115 \\ & 115 \\ & 5 \end{aligned}$	V min V max $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max pF typ
LOGIC OUTPUT High Level Output Voltage ($\mathrm{I}_{\mathrm{OH}}=0.5 \mathrm{~mA}$) Low Level Output Voltage ($\mathrm{I}_{0 \mathrm{~L}}=1.6 \mathrm{~mA}$) Output Capacitance Leakage (Three State, LCC Only)	V_{OH} $\mathrm{V}_{\text {OL }}$ Cout IZ	$\begin{aligned} & +2.4 \\ & +0.4 \\ & 5 \\ & \pm 10 \end{aligned}$	V min V max pF typ $\mu \mathrm{A}$ max

[^3]SWITCHING SPECIF|CATIONS $\begin{aligned} & \left(T_{M I N} \text { to } T_{M A x} \text { with } \mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, D V_{D D}=+5 \mathrm{~V}, D R V_{D D}=+5 \mathrm{~V}, A V_{S S}=-5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right)\end{aligned}$

Parameter	Symbol	J, S Grades	Units
Clock Period ${ }^{1}$	t_{c}	100	ns min
CLOCK Pulsewidth High	t_{CH}	45	$n \mathrm{nmin}$
CLOCK Pulsewidth Low	t_{CL}	45	ns min
Clock D uty Cycle ${ }^{2}$		40	\% min (50% typ)
		60	\% max
Output D elay	$t_{0 D}$	10	ns min (20 ns typ)
Pipeline D elay (L atency)		3	Clock Cycles
D ata Access T ime (LCC Package Only ${ }^{2}$	$t_{D D}$	50	ns typ (100 pF L oad)
Output F loat D elay (LCC Package O nly) ${ }^{2}$	t_{HL}	50	ns typ (10 pF Load)

NOTES
${ }^{1}$ C onversion rate is operational down to 10 kHz without degradation in specified performance.
${ }^{2}$ See section on Three-State Outputs for timing diagrams and applications information.
Specifications subject to change without notice.

Figure 1. Timing Diagram

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
${ }^{2}$ LCC package only.

PIN DESCRIPTION

Symbol	DIP Pin No.	LCC Pin No.	Type	Name and Function
$V_{\text {INA }}$	1	1	AI	(+) Analog Input Signal on the differential input amplifier.
$V_{\text {INB }}$	2	2	AI	(-) Analog Input Signal on the differential input amplifier.
$A V_{\text {SS }}$	3, 25	5, 40	P	-5 V Analog Supply.
$A V_{D D}$	4	6,38	P	+5 V A nalog Supply.
AGND	5,24	9,36	P	Analog Ground.
DGND	6, 23	10	P	Digital Ground.
DV ${ }_{\text {D }}$	7, 22	33	P	+5 V D igital Supply.
BIT 12 (LSB)	8	16	DO	Least Significant Bit.
BIT 2-BIT 11	18-9	26-17	DO	D ata Bits 2 through 11.
$\overline{\text { MSB }}$	19	29	DO	Inverted M ost Significant Bit. Provides twos complement output data format.
OTR	20	30	DO	Out of Range is Active HIGH on the leading edge of Code 0 or the trailing edge of Code 4096. See Output D ata F ormat T able III.
CLK	21	31	DI	Clock Input. The AD872A will initiate a conversion on the rising edge of the clock input. See the Timing Diagram for details.
REF OUT	26	41	AO	+2.5 V Reference Output. T ie to REF IN for normal operation.
REF GND	27	42	AI	R eference Ground.
REF IN	28	43	AI	R eference Input. +2.5 V input gives $\pm 1 \mathrm{~V}$ full-scale range.
DRV ${ }_{\text {D }}$	N/A	12, 32		+5 V Digital Supply for the output drivers.
NC	N/A	$\begin{aligned} & 3,4,7,8,14,15 \\ & 28,35,37,39,44 \end{aligned}$		No Connect.
DRGND	N/A	11, 34		Digital Ground for the output drivers. (See section on Power Supply D ecoupling for details on DRV $V_{D D}$ and DRGND.)
OEN	N/A	13	DI	Output Enable. See the T hree State Output T iming Diagram for details.
BIT 1	N/A	27	DO	M ost Significant Bit.

TYPE: AI = Analog Input; AO = Analog Output; DI = Digital Input; D O = Digital Output; P = Power; N/A = N ot Available on 28-lead DIP. Only available on 44-terminal surface mount package.

PIN CONFIGURATIONS

44-Terminal LCC

AD872A

DEFINITIONS OF SPECIFICATIONS

LINEARITY ERROR (INL)

Linearity error refers to the deviation of each individual code from a line drawn from "negative full scale" through "positive full scale." The point used as "negative full scale" occurs $1 / 2$ LSB before the first code transition. "Positive full scale" is defined as a level $11 / 2$ LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.

DIFFERENTIAL LINEARITY ERROR (DNL, NO MISSING CODES)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 12 -bit resolution indicates that all 4096 codes must be present over all operating ranges.

ZERO ERROR

The major carry transition should occur for an analog value 1/2 LSB below analog common. Zero error is defined as the deviation of the actual transition from that point. The zero error and temperature drift specify the initial deviation and maximum change in the zero error over temperature.

GAIN ERROR

The first code transition should occur for an analog value 1/2 LSB above nominal negative full scale. T he last transition should occur for an analog value $11 / 2$ LSB below the nominal positive full scale. G ain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

TEMPERATURE DRIFT

The temperature drift for zero error and gain error specifies the maximum change from the initial $\left(+25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {min }}$ or $\mathrm{T}_{\text {max }}$.

POWER SUPPLY REJECTION

The specifications show the maximum change in the converter's full scale as the supplies are varied from nominal to min/max values.

APERTURE JITTER

A perture jitter is the variation in aperture delay for successive samples and is manifested as noise on the input to the A/D.

APERTURE DELAY

A perture delay is a measure of the T rack-and-H old Amplifier (THA) performance and is measured from the rising edge of the clock input to when the input signal is held for conversion.

OVERVOLTAGE RECOVERY TIME

O vervoltage recovery time is defined as that amount of time required for the ADC to achieve a specified accuracy after an overvoltage (50% greater than full-scale range), measured from the time the overvoltage signal reenters the converter's range.

DYNAMIC SPECIFICATIONS

SIGNAL-TO-NOISE AND DISTORTION (S/N+D) RATIO
$S / N+D$ is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the N yquist frequency, including harmonics but excluding dc. The value for $\mathrm{S} / \mathrm{N}+\mathrm{D}$ is expressed in decibels.

TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

INTERMODULATION DISTORTION (IMD)

With inputs consisting of sine waves at two frequencies, fa and fb , any device with nonlinearities will create distortion products, of order ($m+n$), at sum and difference frequencies of $\mathrm{mfa} \pm$ $n f b$, where $m, n=0,1,2,3 \ldots$ Intermodulation terms are those for which m or n is not equal to zero. F or example, the second order terms are ($\mathrm{fa}+\mathrm{fb}$) and ($\mathrm{fa}-\mathrm{fb}$), and the third order terms are ($2 \mathrm{fa}+\mathrm{fb}$), ($2 \mathrm{fa}-\mathrm{fb}$), (fa +2 fb) and ($2 \mathrm{fb}-\mathrm{fa}$). The IM D products are expressed as the decibel ratio of the rms sum of the measured input signals to the rms sum of the distortion terms. The two signals are of equal amplitude and the peak value of their sums is -0.5 dB from full scale. The IM D products are normalized to a 0 dB input signal.

FULL-POWER BANDWIDTH

The full-power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3 dB for a full-scale input.

SPURIOUS FREE DYNAMIC RANGE

The difference, in dB , between the rms amplitude of the input signal and the peak spurious signal.

ORDERING GUIDE

Model	Temperature Range	Package Option $^{\mathbf{1}}$
AD 872AJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{D}-28$
AD 872AJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{E}-44 \mathrm{~A}$
AD 872A SD ${ }^{2}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{D}-28$
AD 872A SE ${ }^{2}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-44 \mathrm{~A}$

NOTES

${ }^{1} \mathrm{D}=$ Ceramic DIP, E $=$ Leadless C eramic Chip Carrier.
${ }^{2}$ M IL -ST D-883 version will be available; contact factory.

Dynamic Characteristics- Sample Rate: 10 MSPS- AD872A

Figure 2. AD872A $S /(N+D)$ Input Frequency

Figure 3. AD872A Distortion vs. Input Frequency, Full-Scale Input

Figure 4. AD872A Typical FFT, $f_{I N}=1 \mathrm{MHz}, f_{I N}$ Amplitude $=-0.5 \mathrm{~dB}$

Figure 5. AD872A Typical FFT, $f_{I N}=1 \mathrm{MHz}, f_{I N}$ Amplitude $=-6 d B$

AD872A- Dynamic Characteristics- Sample Rate: 10 MSPS

Figure 6. AD872A Typical FFT, $f_{I N}=750 \mathrm{kHz}$

Figure 7. AD872A Typical FFT, $f_{I N}=5 \mathrm{MHz}$

Figure 8. AD872A Output Code Histogram for DC Input

Figure 9. AD872A Code Probability at a Transition

THEORY OF OPERATION

The AD 872A is implemented using a 4-stage pipelined multiple flash architecture. A differential input track-and-hold amplifier (THA) acquires the input and converts the input voltage into a differential current. A 4-bit approximation of the input is made by the first flash converter, and an accurate analog representation of this 4-bit guess is generated by a digital-to-analog converter. This approximation is subtracted from the THA output to produce a remainder, or residue. This residue is then sampled and held by the second THA, and a 4-bit approximation is generated and subtracted by the second stage. Once the second THA goes into hold, the first stage goes back into track to acquire a new input signal. The third stage provides a 3-bit approximation/subtraction operation, and produces the final residue, which is passed to a final 4-bit flash converter. The 15 output bits from the 4 flash converters are accumulated in the correction logic block, which adds the bits together using the appropriate correction algorithm, to produce the 12-bit output word. The digital output, together with overrange indicator, is latched into an output buffer to drive the output pins.
The additional TH A inserted in each stage of the AD 872A architecture allows pipelining of the conversion. In essence, the converter is converting multiple inputs simultaneously, processing them through the converter chain serially. T his means that while the converter is capable of capturing a new input sample every clock cycle, it actually takes three clock cycles for the conversion to be fully processed and appear at the output. This "pipeline delay" is often referred to as latency, and is not a concern in most applications, however there are some cases where it may be a consideration. For example, some applications call for the A/D converter to be placed in a high speed feedback loop, where its input is servoed to provide a desired result at the digital output (e.g., offset calibration or zero restoration in video applications). In these cases the three clock cycle delay through the pipeline must be accounted for in the loop stability calculations. Also, because the converter is working on three conversions simultaneously, major disruptions to the part (such as a large glitch on the supplies or reference) may corrupt three data samples. F inally, there will be a minimum clock rate below which the THA droop corrupts the signal in the pipeline. In the case of the AD 872A, this minimum clock rate is 10 kHz .
The high impedance differential inputs of the AD 872A allow a variety of input configurations (see APPLYIN G THE AD872A), The AD 872A converts the voltage difference between the $\mathrm{V}_{\text {In }}$ and $V_{\text {In }}$ pins. For single-ended applications, one input pin ($\mathrm{V}_{\text {INA }}$ or $\mathrm{V}_{\text {INB }}$) may be grounded, but even in this case the differential input can provide a performance boost: for example, for an input coming from a coaxial cable, $\mathrm{V}_{\text {Inв }}$ can be tied to the shield ground, allowing the AD 872A to reject shield noise as common mode. The high input impedance of the device minimizes external driving requirements and allows the user to externally select the appropriate termination impedance for the application.
The AD 872A clock circuitry uses both edges of the clock in its internal timing circuitry (see spec page for exact timing requirements). The AD 872A samples the analog input on the rising edge of the clock input. During the clock low time (between the falling edge and rising edge of the clock) the input THA is in track mode; during the clock high time it is in hold. System disturbances just prior to the rising edge of the clock may cause the part to acquire the wrong value, and should be minimized.

While the part uses both clock edges for its timing, jitter is only a significant issue for the rising edge of the clock (see CLOCK INPUT section).

APPLYING THE AD872A ANALOG INPUTS

T he AD 872A features a high impedance differential input that can readily operate on either single-ended or differential input signals. T ablel summarizes the nominal input voltage span for both single-ended and differential modes, assuming a 2.5 V reference input.

Table I. Input Voltage Span

	$\mathbf{V}_{\text {INA }}$	$\mathbf{V}_{\text {INB }}$	$\mathbf{V}_{\text {INA }}-\mathbf{V}_{\text {INB }}$
Single-Ended	+1 V	GND	+1 V (Positive Full Scale)
	-1 V	GND	-1 V (Negative Full Scale)
Differential	+0.5 V	-0.5 V	+1 V (Positive Full Scale)
	-0.5 V	+0.5 V	-1 V (N egative Full Scale)

Figure 10 shows an approximate model for the analog input circuit. As this model indicates, when the input exceeds 1.6 V (with respect to AGND), the input device may saturate, causing the input impedance to drop substantially and significantly reducing the performance of the part. Input compliance in the negative direction is somewhat larger, showing virtually no degradation in performance for inputs as low as -1.9 V .

Figure 10. AD872A Equivalent Analog Input Circuit
Figure 11 illustrates the effect of varying the common-mode voltage of $\mathrm{a}-0.5 \mathrm{~dB}$ input signal on total harmonic distortion.

Figure 11. AD872A Total Harmonic Distortion vs. CM Input Voltage, $f_{I N}=1 \mathrm{MHz}, F S=10 \mathrm{MSPS}$

Figure 12 shows the common-mode rejection performance vs. frequency for a 1 V p-p common-mode input. T his excellent common-mode rejection over a wide bandwidth affords the user the opportunity to eliminate many potential sources of input noise as common mode by using the differential input structure of the AD 872A.

Figure 12. Common-Mode Rejection vs. Input Frequency, 1 V p-p Input
Figures 13 and 14 illustrate typical input connections for singleended inputs.

Figure 13. AD872A Single-Ended Input Connection

Figure 14. AD872A Single-Ended Input Connection Using a Shielded Cable

The cable shield is used as a ground connection for the $\mathrm{V}_{\text {INB }}$ input, providing the best possible rejection of the cable noise from the input signal. N ote also that the high input impedance of the AD872A allows the user to select the termination impedance, be it 50 ohms, or some other value. Furthermore, unlike many flash converters, most AD 872A applications will not require an external buffer amplifier. If such an amplifier is required, we suggest either the AD 811 or AD 9617.
Figure 15 illustrates how external amplifiers may be used to convert a single-ended input into a differential signal. The resistor values of 536Ω and 562Ω were selected to provide optimum phase matching between U 1 and U 2 .

Figure 15. Single-Ended to Differential Connections; U1, U2 =AD811 or AD9617
The use of the differential input signal can help to minimize even-order distortion from the input THA where performance beyond -70 dB is desired.
Figure 16 shows the AD 872A large signal (-0.5 dB) and small signal (-20 dB) frequency response.

Figure 16. Full Power (-0.5dB) and Small Signal Response (-20 dB) vs. Input Frequency
The AD 872A's wide input bandwidth facilitates rapid acquisition of transient input signals: the input T HA can typically settle to 12 -bit accuracy from a full-scale input step in less than 40 ns . Figure 17 illustrates the typical acquisition of a full-scale input step.

Figure 17. Typical AD872A Settling Time

The wide input bandwidth and superior dynamic performance of the input TH A make the AD 872A suitable for undersampling applications where the input frequency exceeds half the sample frequency. The input T HA is designed to recover rapidly from input overdrive conditions, returning from a 50\% overdrive in less than 40 ns .
B ecause of the THA's exceptionally wide input bandwidth, some users may find the AD 872A is sensitive to noise at frequencies from 10 M Hz to 50 M Hz that other converters are incapable of responding to. T his sensitivity can be mitigated by careful use of the differential inputs (see previous paragraphs). Additionally, Figure 18 shows how a small capacitor (10 pF 20 pF for 50Ω terminated inputs) may be placed between $\mathrm{V}_{\text {INA }}$ and $\mathrm{V}_{\text {INB }}$ to help reduce high frequency noise in applications where limiting the input bandwidth is acceptable.

Figure 18. Optional High Frequency Noise Reduction The AD 872A will contribute its own wideband thermal noise. As a result of the integrated wideband noise (0.26 LSB rms, referred-to-input), applying a dc analog input may produce more than one code at the output. A histogram of the ADC output codes, for a dc input voltage, will be between one and three codes wide, depending on how well the input is centered on a given code and how many samples are taken. Figure 8 shows a typical AD 872A code histogram, and Figure 9 illustrates the AD 872A's transition noise.

REFERENCE INPUT

The nominal reference input should be 2.5 V , taken with respect to REFERENCE GROUND (REF GND). Figure 19 illustrates the equivalent model for the reference input: there is no clock or signal-dependent activity associated with the reference input circuitry, therefore, no "kickback" into the reference.

Figure 19. Equivalent Reference Input Circuit
H owever, in order to realize the lowest noise performance of the AD 872A, care should be taken to minimize noise at the reference input.

The AD 872A's reference input impedance is equal to $5 \mathrm{k} \Omega$ ($\pm 20 \%$), and its effective noise bandwidth is 10 M Hz , with a referred-to-input noise gain of 0.8. F or example, the internal reference, with an rms noise of $28 \mu \mathrm{~V}$ (using an external $1 \mu \mathrm{~F}$ capacitor), contributes $24 \mu \mathrm{~V}$ (0.05 LSB) of noise to the transfer function of the AD 872A.
The full-scale peak-to-peak input voltage is a function of the reference voltage, according to the equation:

$$
\left(V_{\text {INA }}=V_{\text {INB }}\right) \text { Full Scale }=0.8 \times\left(V_{\text {REF }}-\text { REF GND }\right)
$$

N ote that the AD872A's performance was optimized for a 2.5 V reference input: performance may degrade somewhat for other reference voltages. Figure 20 illustrates the $S /(N+D)$ performance vs. reference voltage for a $1 \mathrm{MHz},-0.5 \mathrm{~dB}$ input signal. N ote also that if the reference is changed during a conversion, all three conversions in the pipeline will be invalidated.

Figure 20. $S /(N+D)$ vs. Reference Input Voltage, $f_{I N}=1 \mathrm{MHz}, F S=10 \mathrm{MHz}$
T able II summarizes various 2.5 V references suitable for use with the AD 872A, including the onboard bandgap reference (see REFERENCE OUTPUT section).

Table II. Suitable 2.5V References

	Drift (ppm/ ${ }^{\mathbf{C}} \mathbf{C}$)	Initial Accuracy \%
REF 43B	6 (max)	0.2
AD 680JN	10 (max)	0.4
Internal	30 (typ)	0.4

If an external reference is connected to REF IN, REF OUT must be connected to +5 V . This should lower the current in REF GND to less than $350 \mu \mathrm{~A}$ and eliminate the need for a $1 \mu \mathrm{~F}$ capacitor, although decoupling the reference for noise reduction purposes is recommended.
Alternatively, Figure 21 shows how the AD 872A may be driven from other references by use of an external resistor. The external resistor forms a resistor divider with the on-chip $5 \mathrm{k} \Omega$ resistor to realize 2.5 V at the reference input pin (REF IN). A trim potentiometer is needed to accommodate the tolerance of the AD 872A's 5 k Ω resistor.

Figure 21. Optional +5 V Reference Input Circuit

REFERENCE GROUND

The REF GND pin provides the reference point for both the reference input, and the reference output. When the internal reference is operating, it will draw approximately $500 \mu \mathrm{~A}$ of current through the reference ground, so a low impedance path to the external common is desirable. The AD 872A can tolerate a fairly large difference between REF GND and AGND, up to +1 V , without any performance degradation.

REFERENCE OUTPUT

The AD 872A features an onboard, curvature compensated bandgap reference that has been laser trimmed for both absolute value and temperature drift. The output stage of the reference was designed to allow the use of an external capacitor to limit the wideband noise. As Figure 22 illustrates, a $1 \mu \mathrm{~F}$ capacitor on the reference output is required for stability of the reference output buffer. N ote: If used, an external reference may become unstable with this capacitor in place.

Figure 22. Typical Reference Decoupling Connection
With this capacitor in place, the noise on the reference output is approximately $28 \mu \mathrm{~V}$ rms at room temperature. Figure 23 shows the typical temperature drift performance of the reference, while F igure 24 illustrates the variation in reference voltage with load currents.
The output stage is designed to provide at least 2 mA of output current, allowing a single reference to drive up to four AD 872As, or other external loads. The power supply rejection of the reference is better than -54 dB at dc.

Figure 23. Reference Output Voltage vs. Temperature

Figure 24. Reference Output Voltage vs. Output Load

DIGITAL OUTPUTS

In 28-lead packages, the AD 872A output data is presented in twos complement format. T able III indicates offset binary and twos complement output for various analog inputs.

Table III. Output Data Format

Analog Input	Digital Output		
$\mathbf{V}_{\text {INA }}-\mathbf{V}_{\text {INB }}$	Offset Binary	Twos Complement	OTR
$\geq 0.999756 \mathrm{~V}$	111111111111	011111111111	1
0.999268 V	111111111111	011111111111	0
0 V	100000000000	000000000000	0
-1 V	000000000000	100000000000	0
-1.000244 V	000000000000	100000000000	1

U sers requiring offset binary encoding may simply invert the $\overline{M S B}$ pin. In the 44-terminal surface mount packages, both M SB and $\overline{M S B}$ bits are provided.
The AD 872A features a digital out-of-range (OT R) bit that goes high when the input exceeds positive full scale or falls below negative full scale. As T able III indicates, the output bits will be set appropriately according to whether it is an out-of-range high
condition or an out-of-range low condition. N ote that if the input is driven beyond +1.5 V , the digital outputs may not stay at $+F S$, but may actually fold back to midscale.
The AD 872A's C M OS digital output drivers are sized to provide sufficient output current to drive a wide variety of logic families. H owever, large drive currents tend to cause glitches on the supplies and may affect $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ performance. Applications requiring the AD 872A to drive large capacitive loads or large fanout may require additional decoupling capacitors on $\mathrm{D} R \mathrm{~V}_{\mathrm{DD}}$ and $D V_{D D}$. In extreme cases, external buffers or latches could be used.

THREE-STATE OUTPUTS

T he 44-terminal surface mount AD 872A offers three-state outputs. T he digital outputs can be placed into a three-state mode by pulling the OUT PUT ENABLE (OEN) pin LOW. N ote that this function is not intended to be used to pull the AD 872A on and off a bus at 10 M Hz . R ather, it is intended to allow the ADC to be pulled off the bus for evaluation or test modes. Also, to avoid corruption of the sampled analog signal during conversion (3 clock cycles), it is highly recommended that the AD 872A be placed on the bus prior to the first sampling.

Figure 25. Three-State Output Timing Diagram For timing budgetary purposes, the typical access and float delay times for the AD 872A are 50 ns.

CLOCK INPUT

The AD 872A internal timing control uses the two edges of the clock input to generate a variety of internal timing signals. T he optimal clock input should have a 50\% duty cycle; however, sensitivity to duty cycle is significantly reduced for clock rates of less than 10 megasamples per second.

Figure 26. Divide-by-Two Clock Circuit
Due to the nature of on-chip compensation circuitry, the duty cycle should be maintained between 40% and 60% even for clock rates less than 10 M SPS. One way to realize a 50% duty cycle clock is to divide down a clock of higher frequency, as shown in Figure 26.

In this case, a 20 M Hz clock is divided by 2 to produce the 10 M Hz clock input for the AD 872A. In this configuration, the duty cycle of the 20 M Hz clock is irrelevant.
The input circuitry for the CLKIN pin is designed to accommodate both TTL and CM OS inputs. The quality of the logic input, particularly the rising edge, is critical in realizing the best possible jitter performance for the part: the faster the rising edge, the better the jitter performance.
As a result, careful selection of the logic family for the clock driver, as well as the fanout and capacitive load on the clock line, is important. Jitter-induced errors become more pronounced at higher frequency, large amplitude inputs, where the input slew rate is greatest.
The AD 872A is designed to support a sampling rate of 10 M SPS; running at slightly faster clock rates may be possible, although at reduced performance levels. C onversely, some slight performance improvements might be realized by clocking the AD 872A at slower clock rates. Figure 27 presents the $S /(N+D)$ vs. clock frequency for a 1 M Hz analog input.

Figure 27. Typical $S /(N+D)$ vs. Clock Frequency, $f_{I N}=1 \mathrm{MHz}$, Full-Scale Input
The power dissipated by the correction logic and output buffers is largely proportional to the clock frequency; running at reduced clock rates provides a slight reduction in power consumption. Figure 28 illustrates this tradeoff.

Figure 28. Typical Power Dissipation vs. Clock Frequency

ANALOG SUPPLIES AND GROUNDS

The AD 872A features separate analog and digital supply and ground pins, helping to minimize digital corruption of sensitive analog signals. In general, $A V_{S S}$ and $A V_{D D}$, the analog supplies, should be decoupled to AGND, the analog common, as close to the chip as physically possible. C are has been taken to minimize the signal dependence of the power supply currents; however, the analog supply currents will be proportional to the reference input. With REFIN at 2.5 V , the typical current into $A V_{D D}$ is 85 mA , while the typical current out of $A V_{S S}$ is 115 mA . Typically, 30 mA will flow into the AGND pin.
C areful design and the use of differential circuitry provide the AD 872A with excellent rejection of power supply noise over a wide range of frequencies, as illustrated in Figure 29.

Figure 29. Power Supply Rejection vs. Frequency, 100 mV p-p Signal on Power Supplies
Figure 30 shows the degradation in SN R resulting from 100 mV of power supply ripple at various frequencies. As Figure 30 shows, careful decoupling is required to realize the specified dynamic performance. Figure 34 demonstrates the recommended decoupling strategy for the supply pins. N ote that in extremely noisy environments, a more elaborate supply filtering scheme may be necessary.

Figure 30. SNR vs. Supply Noise Frequency $\left(f_{I N}=1 \mathrm{MHz}\right)$

DIGITAL SUPPLIES AND GROUNDS

The digital activity on the AD 872A chip falls into two general categories: CM OS correction logic, and CM OS output drivers. T he internal correction logic draws relatively small surges of current, mainly during the clock transitions; in the 44-terminal package, these currents flow through pins DGND and DV $V_{D D}$. The output drivers draw large current impulses while the output bits are changing. The size and duration of these currents are a function of the load on the output bits: large capacitive loads are to be avoided. In the 44-terminal package, the output drivers are supplied through dedicated pins DRGND and DRV ${ }_{D D}$. Pin count constraints in the 28-lead packages require that the digital and driver supplies share package pins (although they have separate bond wires and on-chip routing). The decoupling shown in Figure 34 is appropriate for a reasonable capacitive load on the digital outputs (typically 20 pF on each pin). Applications involving greater digital loads should consider increasing the digital decoupling proportionately, and/or using external buffers/ latches.

APPLICATIONS

OPTIONAL ZERO AND GAIN TRIM

T he AD 872A is factory trimmed to minimize zero error, gain error and linearity errors. In some applications the zero and gain errors of the AD 872A need to be externally adjusted to zero. If required, both zero error and gain error can be trimmed with external potentiometers as shown in Figure 31. N ote that gain error adjustments must be made with an external reference.
Zero trim should be adjusted first. Connect $\mathrm{V}_{\text {INA }}$ to ground and adjust the $10 \mathrm{k} \Omega$ potentiometer such that a nominal digital output code of 000000000000 (twos complement output) exists. N ote that the zero trim should be decoupled and that the accuracy of the $\pm 2.5 \mathrm{~V}$ reference signals will directly affect the offset.
G ain error may then be calibrated by adjusting the REF IN voltage. The REF IN voltage should be adjusted such that a +1 V input on $\mathrm{V}_{\text {INA }}$ results in the digital output code 01111 11111111 (twos complement output).

Figure 31. Zero and Gain Error Trims

DIGITAL OFFSET CORRECTION

The AD 872A provides differential inputs that may be used to correct any offset voltages on the analog input. For applications where the input signal contains a dc offset, it may be advantageous to apply a nulling voltage to the $\mathrm{V}_{\text {INB }}$ input. Applying a voltage equal to the dc offset will maximize the full-scale input range and therefore the dynamic range. Offsets ranging from -0.7 V to +0.5 V can be corrected.

Figure 32 shows how a dc offset can be applied using the AD 568 12-bit, high speed digital-to-analog converter (DAC). This circuit can be used for applications requiring offset adjustments on every clock cycle. The AD 568 connection scheme is used to provide a -0.512 V to +0.512 V output range. The offset voltage must be stable on the rising edge of the AD 872A clock input.

Figure 32. Offset Correction Using the AD568

UNDERSAMPLING USING THE AD872A AND AD9100

The AD 872A's on-chip TH A optimizes transient response while maintaining low noise performance. For super-N yquist (undersampling) applications it may be necessary to use an external THA with fast track-mode slew rate and hold mode settling time. An excellent choice for this application is the AD 9100, an ultrahigh speed track-and-hold amplifier.

In order to maximize the spurious free dynamic range of the circuit in F igure 33 it is advantageous to present a small signal to the input of the AD 9100 and then amplify the output to the AD 872A's full-scale input range. This can be accomplished with a low distortion, wide bandwidth amplifier such as the AD 9617. The circuit uses a gain of 3.5 to optimize $S /(N+D)$.
For small scale input signals ($-20 \mathrm{~dB},-40 \mathrm{~dB}$), the AD 872A performs better without the track-and-hold because slewlimiting effects are no longer dominant. To gain the advantages of the added track-and-hold, it is important to give the AD 872A a full-scale input.
An alternative to the configuration presented above is to use the AD 9101 track-and-hold amplifier. The AD 9101 provides a built-in post amplifier with a gain of 4, providing excellent ac characteristics in conjunction with a high level of integration.
As illustrated in Figure 33, it is necessary to skew the AD 872A sample clock and the AD 9100 sample/hold control. C lock skew $\left(\mathrm{t}_{s}\right)$ is defined as the time starting at the AD 9100's transition into hold mode and ending at the moment the AD 872A samples. The AD872A samples on the rising edge of the sample clock, and the AD 9100 samples on the falling edge of the sample/hold control. The choice of t_{5} is primarily determined by the settling time of the AD 9100. The droop rate of the AD 9100 must also be taken into consideration. U sing these values, the ideal t_{s} is 17 ns. When choosing clock sources, it is extremely important that the front end track-and-hold sample/hold control is given a very low jitter clock source. This is not as crucial for the AD 872A sample clock, because it is sampling a dc signal.

Figure 33. Undersampling Using the AD872A and AD9100

Figure 34. AD872A/AD871 Evaluation Board Schematic

Figure 35. Silkscreen Layer PCB Layout (Not Shown to Scale)
Table IV. Components List

Reference Designator	Description	Quantity
R1, R2	Resistor, 1\%, M etal Film, 49.9Ω	2
R3	Resistor, 1\%, M etal Film, 10	1
R4-R17	Resistor, 1\%, M etal F ilm, 20	14
C1-C3	SM D Chip Capacitor, $0.01 \mu \mathrm{~F}$	3
C4-C6	C apacitor, T antalum, $22 \mu \mathrm{~F}$	3
C7	C apacitor, T antalum, $10 \mu \mathrm{~F}$	1
C8-C19, C22	SM D Chip Capacitor, $0.1 \mu \mathrm{~F}$	13
C20	C apacitor, M ica, 10 pF	1
C21	Capacitor, Ceramic, $1 \mu \mathrm{~F}$	1
U1	AD 872A	1
U2	REF 43B	1
U3	74H C 04N	1
FB1-F B3	Ferrite Bead	3
J1, J2	BNC Jack	2
JP2, 3, 5, 7, 10	Jumpers	5
JP1-JP11	Headers	11
P1	40-Pin IDC Connector	1

Figure 36. Component Side PCB Layout (Not Shown to Scale)

Figure 37. Solder Side PCB Layout (Not Shown to Scale)

Figure 38. Ground Layer PCB Layout (Not Shown to Scale)

Figure 39. Power Layer PCB Layout (Not Shown to Scale)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead Side Brazed DIP

(D-28)

44-Terminal LCC
(E-44A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1997

[^2]: NOTES
 ${ }^{1} \mathrm{~T}$ emperature ranges are as follows: J G rade: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, S G rade: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Adjustable to zero with external potentiometers (see Zero and G ain Error Calibration section).
 ${ }^{3}+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ and $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$.
 ${ }^{4}$ Includes internal voltage reference drift.
 ${ }^{5}$ Excludes internal voltage reference drift.
 ${ }^{6} \mathrm{C}$ hange in G ain Error as a function of the dc supply voltage ($\mathrm{V}_{\text {NOMINAL }}$ to $\mathrm{V}_{\text {MIN }}, \mathrm{V}_{\text {NOMINAL }}$ to $\mathrm{V}_{\text {MAX }}$).
 ${ }^{7}$ LCC package only.
 Specifications subject to change without notice.

[^3]: Specifications subject to change without notice.

