Dual 16-bit DAC, LVDS interface, up to 1 Gsps, x2, x4 and x8 interpolating

Rev. 4 — 12 December 2012

Product data sheet

1. General description

The DAC1617D1G0 is a high-speed 16-bit dual channel Digital-to-Analog Converter (DAC) with selectable $\times 2$, $\times 4$ and $\times 8$ interpolation filters. The device is optimized for multi-carrier and broadband wireless transmitters at sample rates of up to 1 Gsps. Supplied from a 3.3 V and a 1.8 V source, the DAC1617D1G0 integrates a differential scalable output current up to 34 mA.

The Serial Peripheral Interface (SPI) provides full control of the DAC1617D1G0.

The DAC1617D1G0 integrates a Low Voltage Differential Signaling (LVDS) Double Data Rate (DDR) receiver interface, with an on-chip 100 Ω termination. The LVDS DDR interface accepts a multiplex input data stream such as interleaved or folded. An internal LVDS input auto-calibration ensures the robustness and stability of the interface.

Digital on-chip modulation converts the complex I and Q inputs from baseband to IF. A 40-bit Numerically Controlled Oscillator (NCO) sets the mixer frequency. High resolution internal gain, phase and offset control provide outstanding image and Local Oscillator (LO) signal rejection at the system analog modulator output.

An inverse $(\sin x) / x$ function ensures a controlled flatness 0.5 dB for high bandwidths at the DAC output.

Multiple device synchronization allows synchronization of the outputs of multiple DAC devices. MDS guarantees a maximum skew of one output clock period between several devices.

The DAC1617D1G0 includes a very low noise capacitor-free integrated Phase-Locked Loop (PLL) multiplier which generates a DAC clock rate from the LVDS clock rate.

The DAC1617D1G0 is available in an HVQFN72 package (10 mm × 10 mm).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

2. Features and benefits

- Dual-channel 16-bit resolution
- 1 Gsps maximum update rate
- Selectable ×2, ×4 and ×8 interpolation filters
- Very low noise capacitor-free integrated External analog offset control Phase-Locked Loop (PLL)
- Embedded Numerically Controlled Oscillator (NCO) with 40-bit programmable frequency
- Embedded complex(I/Q) digital IF modulator
- 1.8 V and 3.3 V power supplies
- LVDS DDR compatible input interface with on-chip 100 Ω terminations
- LVDS DDR input clock up to 370 MHz
- LVDS or LVPECL compatible DAC clock
- Interleaved or folded I and Q data input 72 pins small form factor HVQFN mode

- Synchronization of multiple DAC devices
- 3-wire or 4-wire mode SPI interface
- Differential scalable output current from 8.1 mA to 34 mA
- (10-bit auxiliary DACs)
- High resolution internal digital gain and offset control to support high performance IQ-modulator image rejection
- Internal phase correction
- Inverse (sin x) / x function
- Power-down mode and Sleep mode; 5-bit NCO low-power mode
- On-chip 1.25 V reference
- Industrial temperature range -40 °C to +85 °C
- package

Applications 3.

- Wireless infrastructure: LTE, WiMAX, GSM, CDMA, WCDMA, TD-SCDMA
- Communications: LMDS/MMDS, point-to-point
- Direct Digital Synthesis (DDS)
- Broadband wireless systems
- Digital radio links
- Instrumentation
- Automated Test Equipment (ATE)

4. Ordering information

Table 1. **Ordering information**

Type number	per Package						
	Name	Description	Version				
DAC1617D1G0HN	HVQFN72	plastic thermal enhanced very thin quad flat package; no leads; 72 terminals; body $10 \times 10 \times 0.85$ mm	SOT813-3				

5. Block diagram

© IDT 2012. All rights reserved. 3 of 78 Integrated Device Technology

DAC1617D1G0
Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2.	Pin description	on	
Symbol	Pin	Type <mark>[1]</mark>	Description
CLKP	1	I	DAC clock positive input
CLKN	2	I	DAC clock negative input
MDSP	3	IO	multi-device synchronization positive signal
MDSN	4	IO	multi-device synchronization negative signal
ТМ	5	I	Test mode selection (connect to GND)
ALIGNP	6	I	positive input for data alignment
ALIGNN	7	I	negative input for data alignment
LD[15]P	8	I	LVDS positive input bit 15 ^[2]
LD[15]N	9	I	LVDS negative input bit 15 ^[2]

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 2.	Pin descriptio	n continu	led
Symbol	Pin	Type <mark>[1]</mark>	Description
LD[14]P	10	I	LVDS positive input bit 14 ^[2]
LD[14]N	11	I	LVDS negative input bit 14 ^[2]
V _{DDD}	12	Р	digital power supply
LD[13]P	13	I	LVDS positive input bit 13 ^[2]
LD[13]N	14	I	LVDS negative input bit 13[2]
LD[12]P	15	I	LVDS positive input bit 12 ^[2]
LD[12]N	16	I	LVDS negative input bit 12 ^[2]
LD[11]P	17	I	LVDS positive input bit 11 ^[2]
LD[11]N	18	I	LVDS negative input bit 11[2]
V _{DDD}	19	Р	digital power supply
LD[10]P	20	I	LVDS positive input bit 10 ^[2]
LD[10]N	21	I	LVDS negative input bit 10 ^[2]
LD[9]P	22	I	LVDS positive input bit 9 ^[2]
LD[9]N	23	Ι	LVDS negative input bit 9 ^[2]
LD[8]P	24	I	LVDS positive input bit 8 ^[2]
LD[8]N	25	I	LVDS negative input bit 8 ^[2]
V _{DDD}	26	Р	digital power supply
LCKP	27	I	LVDS positive data clock input
LCKN	28	I	LVDS negative data clock input
n.c.	29	G	not connected
LD[7]P	30	I	LVDS positive input bit 7 ^[2]
LD[7]N	31	I	LVDS negative input bit 7 ^[2]
LD[6]P	32	I	LVDS positive input bit 6 ^[2]
LD[6]N	33	I	LVDS negative input bit 6 ^[2]
LD[5]P	34	I	LVDS positive input bit 5 ^[2]
LD[5]N	35	I	LVDS negative input bit 5 ^[2]
V _{DDD}	36	Р	digital power supply
LD[4]P	37	I	LVDS positive input bit 4 ^[2]
LD[4]N	38	I	LVDS negative input bit 4 ^[2]
LD[3]P	39	I	LVDS positive input bit 3 ^[2]
LD[3]N	40	I	LVDS negative input bit 3 ^[2]
LD[2]P	41	I	LVDS positive input bit 2 ^[2]
LD[2]N	42	I	LVDS negative input bit 2 ^[2]
V _{DDD}	43	Р	digital power supply
LD[1]P	44	I	LVDS positive input bit 1 ^[2]
LD[1]N	45	I	LVDS negative input bit 1 ^[2]
LD[0]P	46	I	LVDS positive input bit 0 ^[2]
LD[0]N	47	I	LVDS negative input bit 0 ^[2]
IO1	48	Ю	IO port bit 1
IO0	49	IO	IO port bit 0
SDO	50	0	SPI data output

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 2. Pi	n descripti	oncontin	ued
Symbol	Pin	Type <mark>[1]</mark>	Description
SDIO	51	IO	SPI data input/output
SCLK	52	I	SPI clock
SCS_N	53	I	SPI chip select (active LOW)
RESET_N	54	I	general reset (active LOW)
V _{DDA(1V8)_D}	55	Р	1.8 V analog power supply (DAC core)
IOUTBN	56	0	complementary DAC B output current
IOUTBP	57	0	DAC B output current
V _{DDA(1V8)_D}	58	Р	1.8 V analog power supply (DAC core)
V _{DDA(3V3)}	59	Р	3.3 V analog power supply
AUXBP	60	0	auxiliary DAC B output current
AUXBN	61	0	complementary auxiliary DAC B output current
V _{DDA(1V8)_P1}	62	Р	1.8 V analog power supply (PLL)
VIRES	63	IO	DAC biasing resistor
GAPOUT	64	IO	band gap input/output voltage
V _{DDA(1V8)_P2}	65	Р	1.8 V analog power supply (PLL)
AUXAN	66	0	complementary auxiliary DAC A output current
AUXAP	67	0	auxiliary DAC A output current
V _{DDA(3V3)}	68	Р	3.3 V analog power supply
V _{DDA1V8_D}	69	Р	1.8 V analog power supply (DAC core)
IOUTAP	70	0	DAC A output current
IOUTAN	71	0	complementary DAC A output current
V _{DDA(1V8)_D}	72	Р	1.8 V analog power supply (DAC core)
GND	Н	G	ground (exposed die pad)

[1] P: power supply; G: ground; I: input; O: output.

[2] The LVDS input data bus order can be reversed and each element can be swapped between P and N using dedicated registers (see <u>Table 60</u>).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

7. Limiting values

Table 3. In accorda	Limiting values ince with the Absolute M	aximum Rating System (IEC 6013	34).		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA(3V3)}	analog supply voltage (3.3 V)		-0.5	+4.6	V
V _{DDD}	digital supply voltage		-0.5	+2.5	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)		[1] -0.5	+2.5	V
VI	input voltage	input pins referenced to GND	-0.5	+2.5	V
Vo	output voltage	pins IOUTAP, IOUTAN, IOUTBP, IOUTBN, AUXAP, AUXAN, AUXBP and AUXBN referenced to GND	-0.5	+4.6	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
Tj	junction temperature		-40	+125	°C

[1] Connect the analog 1.8 V power supply to pins VDDA1V8_D, VDDA1V8_P1, and VDDA1V8_P2.

8. Thermal characteristics

Table 4.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient		16.2	K/W
R _{th(j-c)}	thermal resistance from junction to case		[1] 6.7	K/W

[1] Value for six-layer board in still air with a minimum of 49 thermal vias.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

9. Characteristics

Table 5. Characteristics

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Мах	Unit
V _{DDA(3V3)}	analog supply voltage (3.3 V)		С	3.15	3.3	3.45	V
V _{DDD}	digital supply voltage		С	1.7	1.8	1.9	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)		C [2]	1.7	1.8	1.9	V
I _{DDA(3V3)}	analog supply current (3.3 V)	Auxiliary DAC on	С	51	55	59	mA
I _{DDD}	digital supply current (1.8 V)	f _s = 983.04 67; ×4 interpolation; no NCO; MDS off	С	475	525	585	mA
		f _s = 620 Msps; ×2 interpolation; NCO on; no MDS	С	400	450	500	mA
I _{DDA(1V8)}	analog supply	f _s = 983.04 Msps; 1 V (p-p)	C [2]	207	218	230	mA
	current (1.8 V)	f _s = 620 Msps; 1 V (p-p)	С	207	218	230	mA
P _{tot}	total power dissipation	f _s = 983.04 Msps; ×4 interpolation; NCO off; MDS off	С	-	1580	-	mW
		f _s = 983.04 Msps; ×4 interpolation; 5-bit NCO; MDS off	С	-	1500	-	mW
		f _s = 620 Msps; ×2 interpolation; 5-bit NCO; MDS off		-	1370	-	mW
		power-down using SPI register	С	-	63	-	mW
Clock inputs	(pins CLKP, CLK	N)					
V _{i(clk)dif}	differential clock input voltage	peak-to-peak	С	150	-	1000	mV
R _i	input resistance		D	-	200	-	kΩ
Ci	input capacitance		D	-	1	-	pF
Digital inputs	(pins LD[15]P to	LD[0]P, LD[15]N to LD[0]N	, LCKP a	nd LCKN, ALI	GNP and ALI	GNN)	
Vi	input voltage	V _{gpd} < 50 mV <mark>[3]</mark>	С	825	-	1575	mV
V _{idth}	input differential threshold voltage	V _{gpd} < 50 mV <mark>[3]</mark>	С	-100	-	+100	mV
Ri	input resistance		D	-	100	-	Ω
Ci	input		D	-	0.8	-	pF
	capacitance	pins LCKP and LCKN	D	-	0.9	-	pF

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 5. Characteristics ...continued

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Max	Unit
Digital inputs	outputs (pins M	DSN, MDSP)					
$V_{o(dif)(p-p)}$	peak-to-peak differential output voltage		С	-	500	-	mV
Ci	input capacitance	between GND and pin MDSN or MDSP	D	-	0.6	-	pF
R _i	input resistance		D	-	100	-	Ω
V _i	input voltage	∣V _{gpd} < 50 mV <mark>[3]</mark>	С	825	-	1575	mV
V _{idth}	input differential threshold voltage	V _{gpd} < 50 mV <mark>⊠</mark>	С	-100	-	+100	mV
Digital inputs	outputs (pins SI	DO, SDIO, SCLK, SCS_N, R	ESET_N,	IO0, IO1)			
V _{IL}	LOW-level input voltage		С	GND	-	0.3V _{DDD(1V8)}	V
V _{IH}	HIGH-level input voltage		С	0.7V _{DDD(1V8)}	-	V _{DDD(1V8)}	V
V _{OL}	LOW-level output voltage	pins IO0, IO1, SDO and SDIO	С	GND	-	$0.1V_{DDD(1V8)}$	V
V _{OH}	HIGH-level output voltage	pins IO0, IO1, SDO and SDIO	С	0.9V _{DDD(1V8)}	-	V _{DDD(1V8)}	V
IIL	LOW-level input current	maximum VIL	I	-10	-	+10	μΑ
I _{IH}	HIGH-level input current	maximum VIL	I	-10	-	+10	μΑ
C _i	input capacitance		D	-	2.2	-	pF
Analog outpu	uts (pins IOUTAP,	IOUTAN, IOUTBP, IOUTBN)				
I _{bias}	bias current	DC current	D	-	2.5	-	mA
I _{O(fs)}	full-scale output current	controlled by the analog GAIN registers (see <u>Table 32</u>)	D	8.1	-	34	mA
		default value	D	-	20	-	mA
Vo	output voltage	compliance range	D	2.3	-	V _{DDA(3V3)}	V
V _{O(cm)}	common-mode	1 V (p-p) DAC output	D	-	3	-	V
	output voltage	2 V (p-p) DAC output		-	2.8	-	V
R _o	output resistance		D	-	250	-	kΩ
Co	output capacitance	between pins OUTAN and OUTBN and pins OUTBN and OUTBP	D	-	5	-	pF
Reference vo	ltage output (pin	GAPOUT)					
V _{O(ref)}	reference output voltage	T _{amb} = +25 °C	I	-	1.22	-	V
DAC1617D1G0						© IDT 2012	All rights reserved

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 5. Characteristics ...continued

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Max	Unit
I _{O(ref)}	reference output current	1.25 V external voltage	D	-	40	-	μΑ
Analog auxil	iary outputs (pins	S AUXAP, AUXAN, AUXBP	and AUXI	BN)			
I _{O(fs)}	full-scale output current	auxiliary DAC A; differential outputs	I	-	3.1	-	mA
		auxiliary DAC B; differential outputs	I	-	3.1	-	mA
V _{O(aux)}	auxiliary output voltage	compliance range	D	0	-	2.3	V
LVDS input ti	iming						
f _{data}	data rate	$f_{s(max)}$ specification must be respected ($f_s = f_{data} \times interpolation$ factor)	С	-	-	370	MHz
t _{sk(clk-D)}	skew time from	f _{DATA} = 184.32 Mhz	С	800	-	830	ps
	clock to data	f _{DATA} = 245.76 MHz	С	500	-	675	ps
	input	f _{DATA} = 307.2 MHz	С	300	-	520	ps
		f _{DATA} = 368.64 MHz	С	150	-	500	ps
t _{su}	set-up time	manual tuning mode (see <u>Figure 16</u>); depends on LDCLK_DEL[3:0]					
		0000	С	-300	-	-	ps
		0001	С	-365	-	-	ps
		0010	С	-440	-	-	ps
		0011	С	-520	-	-	ps
		0100	С	-590	-	-	ps
		0101	С	-675	-	-	ps
		0110	С	-750	-	-	ps
		0111	С	-830	-	-	ps
		1000	С	-845	-	-	ps
		1001	С	-845	-	-	ps
		1010	С	-1000	-	-	ps
		1011	С	-1100	-	-	ps
		1100	С	-1220	-	-	ps
		1101	С	-1290	-	-	ps
		1110	С	-1360	-	-	ps
		1111	С	-1450	-	-	ps

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 5. Characteristics ...continued

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Мах	Unit
t _{hold}	hold time	manual tuning mode (see <u>Figure 15</u>); depends on LDCLK_DEL[3:0]:					
		0000	С	790	-	-	ps
		0001	С	870	-	-	ps
		0010	С	950	-	-	ps
		0011	С	1055	-	-	ps
		0100	С	1140	-	-	ps
		0101	С	1230	-	-	ps
		0110	С	1360	-	-	ps
		0111	С	1460	-	-	ps
		1000	С	1900	-	-	ps
		1001	С	2075	-	-	ps
		1010	С	2250	-	-	ps
		1011	С	2400	-	-	ps
		1100	С	2560	-	-	ps
		1101	С	2740	-	-	ps
		1110	С	2900	-	-	ps
		1111	С	3000	-	-	ps
DAC output t	iming						
f _{s(max)}	sampling rate		С	1000	-	-	Msps
t _s	settling time	to \pm 0.5 LSB	D	-	20	-	ns
Internal PLL	timing						
f _s	sampling rate		D	50	-	1000	Msps
40-bit NCO fr	equency range;	f _s = 1000 Msps					
f _{NCO}	NCO frequency	two's complement coding					
		register value = 8000000000h	D	-	-500	-	MHz
		register value = FFFFFFFFFh	D	-	-0.9095	-	mHz
		register value = 0000000000h	D	-	0	-	Hz
		register value = 0000000001h	D	-	+0.9095	-	mHz
		register value = 7FFFFFFFFh	D	-	+499.99909	-	MHz
f _{step}	step frequency		D	-	0.9095	-	mHz

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 5. Characteristics ...continued

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Max	Unit
Low-power N	ICO frequency ra	nge; f _s = 1000 MHz					
f _{NCO}	NCO frequency	two's complement coding					
		register value = F8000000000h	D	-	-500	-	MHz
		register value = F8000000000h	D	-	-31.25	-	MHz
		register value = 00000000000h	D	-	0	-	Hz
		register value = 08000000000h	D	-	+31.25	-	MHz
		register value = 7FFFFFFFFh	D	-	+468.75	-	MHz
f _{step}	step frequency		D	-	31.25	-	MHz
Dynamic per	formance						
SFDR	spurious-free dynamic range	$\label{eq:data} \begin{array}{l} f_{data} = 245.76 \mbox{ MHz}; \\ f_{s} = 983.04 \mbox{ Msps}; \\ \mbox{ BW} = f_{s} \slash 2 \end{array}$					
		$f_o = 20 \text{ MHz at} - 1 \text{ dBFS}$	I	-	78	-	dBc
		$\label{eq:fdata} \begin{split} f_{data} &= 184.32 \text{ MHz}; \\ f_s &= 737.28 \text{ Msps}; \\ BW &= f_s / 2 \end{split}$					
		$f_o = 20 \text{ MHz at} - 1 \text{ dBFS}$		-	78	-	dBc
SFDR _{RBW}	restricted bandwidth spurious-free	$\begin{array}{l} f_{data} = 245.76 \text{ MHz}; \\ f_{s} = 983.04 \text{ Msps}; \\ f_{o} = 150 \text{ MHz} \end{array}$		-		-	dBc
	dynamic range	BW = 100 MHz		-	78	-	dBc
		BW = 180 MHz		-	78	-	dBc
IMD3	third-order intermodulation distortion	$\begin{array}{l} f_{data} = 245.76 \mbox{ MHz}; \\ f_{s} = 983.04 \mbox{ Msps}; \\ f_{o1} = 20 \mbox{ MHz}; \\ f_{o2} = 21 \mbox{ MHz}; \\ \times 4 \mbox{ interpolation}; \\ \mbox{ output level} = -1 \mbox{ dBFS} \end{array}$	С	-	75	-	dBc
		$f_{data} = 245.76 \text{ MHz};$ $f_{s} = 983.04 \text{ Msps};$ $f_{o1} = 152 \text{ MHz};$ $f_{o2} = 155.1 \text{ MHz};$ $\times 4 \text{ interpolation};$ output level = -1 dBFS	1	-	75	-	dBc

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 5. Characteristics ...continued

 $V_{DDA(1V8)} = 1.8 \text{ V}; V_{DDD} = 1.8 \text{ V}; V_{DDA(3V3)} = 3.3 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; R_L = 50 \Omega; I_{O(fs)} = 20 \text{ mA};$ maximum sample rate used; external PLL; no auxiliary DAC; no inverse sinus x/x; no output correction; output load condition defined in Figure 29; output level = 1 V (p-p).

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Мах	Unit
ACPR	adjacent channel power ratio	WCDMA pattern; $f_s = 983.04$ Msps; ×4 interpolation; $f_{NCO} = 153.6$ MHz					
		1 carrier; BW = 5 MHz	С	-	73	-	dBc
		2 carriers; BW = 10 MHz	С	-	70	-	dBc
		4 carriers; BW = 20 MHz	С	-	68	-	dBc
$lpha_{isol(ch-ch)}$	isolation between channels	$\label{eq:fs} \begin{array}{l} f_s = 1228.8 \mbox{ Msps}; \\ \times 4 \mbox{ interpolation}; \\ f_{out} = 10 \mbox{ MHz}; \mbox{ NCO} = \mbox{ off}; \\ \mbox{ level} = 0.1 \mbox{ dBFS}; \mbox{ both} \\ \mbox{ DAC channels enabled} \end{array}$	С	-	110	-	dBc
		$ f_s = 1228.8 \text{ Msps}; \\ \times 4 \text{ interpolation}; \\ f_{out} = 83 \text{ MHz}; \text{ NCO} = off; \\ level = 0.1 \text{ dBFS}; \text{ both} \\ DAC \text{ channels enabled} $	С	-	95	-	dBc
		$ f_s = 1228.8 \text{ Msps}; \\ \times 4 \text{ interpolation;} \\ f_{out} = 210 \text{ MHz; NCO = on;} \\ level = 0.1 \text{ dBFS; one DAC} \\ channel enabled; one DAC \\ channel disabled $	С	-	81	-	dBc
NSD	noise spectral density	$f_s = 983.04 \text{ Msps};$ ×4 interpolation; $f_o = 20 \text{ MHz at} -1 \text{ dBFS}$	D	-	-158	-	dBm/Hz
		$ \begin{array}{l} f_s = 983.04 \mbox{ Msps}; \\ \times 4 \mbox{ interpolation}; \\ f_o = 153.6 \mbox{ MHz at} -1 \mbox{ dBFS} \end{array} $	D	-	-155	-	dBm/Hz

[1] D = guaranteed by design; C = guaranteed by characterization; I = 100 % industrially tested.

[2] Connect V_{DDA(1V8)_D}, V_{DDA(1V8)_P1} and V_{DDA(1V8)_P2} to the same 1.8 V analog power supply. Use dedicated filters for the three power pins.

[3] |V_{gpd}| represents the ground potential difference voltage. This voltage is the result of current flowing through the finite resistance and the inductance between the receiver and the driver circuit ground voltages.

10. Application information

10.1 General description

The DAC1617D1G0 is a dual 16-bit DAC operating up to 1000 Msps. Each DAC consists of a segmented architecture, comprising a 6-bit thermometer subDAC and a 10-bit binary weighted subDAC.

A maximum input LVDS DDR data rate of up to 370 MHz and a maximum output sampling rate of 1000 Msps ensure more flexibility for wide bandwidth and multi-carrier systems. The internal 40-bit NCO of the DAC1617D1G0 simplifies the frequency selection of the system. The DAC1617D1G0 provides $\times 2$, $\times 4$ or $\times 8$ interpolation filters that are useful for removing the undesired images.

Each DAC generates two complementary current outputs on pins IOUTAP and IOUTAN and pins IOUTBP and IOUTBN. These outputs provide a full-scale output current ($I_{O(fs)}$) of up to 34 mA. An internal reference is available for the reference current which is externally adjustable using pin VIRES.

High resolution internal gain, phase and offset control provide outstanding image and Local Oscillator (LO) signal rejection at the system analog modulator output.

Multiple device synchronization enables synchronization of the outputs of multiple DAC devices. MDS guarantees a maximum skew of one output clock period between several devices.

All functions can be set using an SPI interface.

10.2 Serial Peripheral Interface (SPI)

10.2.1 Protocol description

The DAC1617D1G0 serial interface is a synchronous serial communication port ensures easy interface with many industry microprocessors. It provides access to the registers that define the operating modes of the chip in both write and read mode.

This interface can be configured as a 3-wire type (pin SDIO as bidirectional pin) or 4-wire type (pins SDIO and SDO as unidirectional pins, input and output port, respectively). In both configurations, SCLK acts as the serial clock and SCS_N as the serial chip select.

<u>Figure 3</u> shows the SPI protocol. An SCS_N signal follows each read/write operation. A LOW assertion enables it to drive the chip with 2 bytes to 5 bytes, depending on the content of the instruction byte (see <u>Table 7</u>).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

R/W indicates the mode access (see Table 6)

Table 6.	Read or	Write	mode	access	description
----------	---------	-------	------	--------	-------------

R/W	Description
0	Write mode operation
1	Read mode operation

<u>Table 7</u> shows the number of bytes to be transferred. N1 and N0 indicate the number of bytes transferred after the instruction byte.

Table 7.	Number	of by	ytes t	ransf	erred

N1	N0	Number of bytes transferred
0	0	1 byte
0	1	2 bytes
1	0	3 bytes
1	1	4 bytes

A[4:0] indicates which register is being addressed. If a multiple transfer occurs, this address concerns the first register. The other registers follow directly in a decreasing order (see <u>Table 21, Table 35</u> and <u>Table 53</u>).

The DAC1617D1G0 incorporates more than the 32 SPI registers allowed by the address value A[4:0]. It uses three SPI register pages (page_00, page_01, and page_0A), each containing 32 registers. The 32nd register of each page indicates which page is currently addressed (00h, 01h or 0Ah).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.2.2 SPI timing description

The SPI interface can operate at a frequency up to 25 MHz. The SPI timings are shown in Figure 4.

The SPI timing characteristics are given in Table 8.

Table 8. SPI timing characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCLK}	SCLK frequency	-	-	25	MHz
$t_{w(SCLK)}$	SCLK pulse width	30	-	-	ns
t _{su(SCS_N)}	SCS_N set-up time	20	-	-	ns
t _{h(SCS_N)}	SCS_N hold time	20	-	-	ns
t _{su(SDIO)}	SDIO set-up time	10	-	-	ns
t _{h(SDIO)}	SDIO hold time	5	-	-	ns
$t_{w(\text{RESET}_N)}$	RESET_N pulse width	30	-	-	ns

10.3 Power-on sequence

There are three steps for the power-on sequence (see Figure 5):

- 1. The board is power-on. At the turn-on time, all DAC1617D1G0 supplies have reached their specification ranges.
- 2. At least 1 µs after the turn-on time pin RESET_N must be released.
- When the DAC clock and LVDS clock are stable, the SPI configuration is sent to the DAC1617D1G0. Writing 0 in bits RST_DCLK and RST_LCLK of the register MAIN_CNTRL (see <u>Table 54</u>) starts the automatic calibration. 30 μs after this calibration, the DAC1617D1G0 is operational.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.4 LVDS Data Input Format (DIF) block

The Data Input Formatting (DIF) block captures and resynchronizes data on the LVDS bus with its own LCLKP/LCLKN clock. Each LVDS input buffer has an internal resistance of 100 Ω , so an external resistor is not required. The DIF block includes two subblocks:

• LVDS receiver:

Provides high flexibility for the LVDS interface, especially for the PCB layout and the control of the input port polarity and the input port mapping.

• Data format block:

Enables the adaptation, which ensures the support of several data encoding modes.

10.4.1 Input port polarity

The polarity of each individual LVDS input (LD[15]P to LD[0]P and LD[15]N to LD[0]N) can be changed. This ensures a much easier PCB layout design. The input polarity is controlled with bits LD_POL[15:0] (see <u>Table 59</u>).

10.4.2 Input port mapping

Inverting the order of the LSB and the MSB of the LVDS bus using bit WORD_SWAP in register LD_CNTRL (see <u>Table 60</u>) also simplifies the design of the PCB (see <u>Table 9</u>).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 9. Input LVDS bus swapping							
Internal LVDS bus	External LVDS bus (WORD_SWAP = 0)	External LVDS bus (WORD_SWAP = 1)					
LDI[15]P,N	LD[15]P,N	LD[0]P,N					
LDI[14]P,N	LD[14]P,N	LD[1]P,N					
LDI[13]P,N	LD[13]P,N	LD[2]P,N					
LDI[12]P,N	LD[12]P,N	LD[3]P,N					
LDI[11]P,N	LD[11]P,N	LD[4]P,N					
LDI[10]P,N	LD[10]P,N	LD[5]P,N					
LDI[9]P,N	LD[9]P,N	LD[6]P,N					
LDI[8]P,N	LD[8]P,N	LD[7]P,N					
LDI[7]P,N	LD[7]P,N	LD[8]P,N					
LDI[6]P,N	LD[6]P,N	LD[9]P,N					
LDI[5]P,N	LD[5]P,N	LD[10]P,N					
LDI[4]P,N	LD[4]P,N	LD[11]P,N					
LDI[3]P,N	LD[3]P,N	LD[12]P,N					
LDI[2]P,N	LD[2]P,N	LD[13]P,N					
LDI[1]P,N	LD[1]P,N	LD[14]P,N					
LDI[0]P,N	LD[0]P,N	LD[15]P,N					

10.4.3 Input port swapping

The LVDS DDR receiver block internally maps the incoming LVDS data bus into two buses with a single data rate (Figure 7).

These two buses can be swapped internally using bit LDAB_SWAP of register LD_CNTRL (see <u>Table 60</u> and <u>Figure 8</u>).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.4.4 Input port formatting

The LVDS DDR input bus multiplexes two 16-bit streams. The LVDS receiver block demultiplexes these two streams.

The two streams can carry two data formats:

- Folded
- Interleaved

The data format block is in charge of the data format adaptation (see Figure 9).

The DAC1617D1G0 can correctly decode the input stream using bit IQ_FORMAT of register LD_CNTRL (see <u>Table 60</u>), because it can determine which format is used on the LVDS DDR bus.

<u>Table 10</u> shows the format mapping between the LVDS input data and the data sent to the two DAC channels depending on the data format selected.

Table 10. Folded and interleaved format mapping

Data format	Data bit mapping
interleaved format (IQ_FORMAT = 1)	In[150] = An[150]; Qn[150] = Bn[150]
folded format (IQ_FORMAT = 0)	ln[158] = An[158]; ln[70] = Bn[158] Qn[158] = An[70]; Qn[70] = Bn[70]

10.4.5 Data parity/data enable

The ALIGN pins can be used in several ways:

- As datastream start flag for Multiple Devices Synchronization (see Section 10.13).
- As LVDS data enable which can be used to insert a DC level into the datastream. The SEL_EN bits in register LD_CNTRL (see <u>Table 60</u>) enable the programming of this mode. The DC level for both channels is selected using registers I_DC_LVL and Q_DC_LVL (see <u>Table 62</u>)
- As parity bit for the LD[15:0] to detect disruptions at the LVDS-input port bit PARITYC in register LD_CNTRL (see <u>Table 60</u>) enabling the control of this mode. A Parity error can generate an interrupt (INTR) reported on either IO0 or IO1 pin

10.5 Interrupt controller

The DAC1617D1G0 incorporates an interrupt controller that makes notifying a host-controller in case of an internal event. The INTR-signal can be made available on one of the IO pins. The polarity on the IO pins is programmable.

The internal event that must be tracked and generates an interrupt can be selected using the INTR_EN register (see <u>Table 45</u>). Two types of interrupt sources are considered:

- The ready-indicators (MAQ_RDY_B, MAQ_RDY_A, AUTO_CAL_RDY, and AUTO_DL_RDY; register INTR_FLAGS; see Table <u>Table 47</u>) notify the host-interface that the corresponding process (invoked by the host interface) has been finalized
- The error flags indicate that a failure has been detected. For example, on the LVDS-interface it is possible to check for parity errors and/or to monitor if the internal timing of the LVDS clock delay has changed since the calibration. Errors like these can result in critical timings within the Clock Domain Interface (CDI) which transfers the data from the LCLK to the DCLK domain

The selected event that has invoked the interrupt can be determined using the INTR_FLAGS register (see <u>Table 47</u>). The flags and the INTR signal are reinitialized by setting the INTR_CLEAR control bit in register INTR_CTRL (see <u>Table 45</u>).

10.6 General-purpose IO pins

The DAC1617D1G0 provides two general-purpose pins, IO0 and IO1. These pins can be used to observe the interrupt signal (INTR) or other internal signals (internal clocks, LVDS data, etc.). These pins can also be used as generic outputs to control external devices.

The internal signals that must be observed on these pins are selected using registers IO_MUX0, IO_MUX1, and IO_MUX2 (see <u>Table 63</u> and <u>Table 64</u>).

10.7 Input clock

The DAC1617D1G0 operates with two clocks, one for the LVDS DDR interface and one for the DAC core.

10.7.1 LVDS DDR clock

The LVDS DDR clock can be interfaced as shown in Figure 10 because the clock buffer contains a 100 Ω internal resistor.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.7.2 DAC core clock

The DAC core clock can achieve a frequency of up to 1 Gsps. It includes internal biasing to support both AC-coupling and DC-coupling. The clock can be easily connected to any LVDS, CML or PECL clock sources.

Depending on the interface selected, the hardware configuration varies (see <u>Figure 11</u> to <u>Figure 13</u>).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.8 Timing

The DAC1617D1G0 can operate at an update rate (f_s) of up to 1 Gsps and with an input data rate (f_{data}) of up to 370 MHz.

The sampling position of the LVDS data can be tuned using a 16-step compensation delay clock. An internal clock is generated to define the exact sampling position of the LVDS data (see <u>Figure 14</u>, signals LDCLKPcp and LDCLKNcp) which depends on the compensation delay.

Figure 14 shows how the compensation delay helps to recover the LVDS DDR data on both the A and B paths.

The compensation delay time (t_{cmp} in Figure 14) can be tuned automatically or manually. Bit CAL_CNTRL of the MAIN_CNTRL register (see Table 54) enables the switching between automatic tuning and manual tuning.

In Automatic tuning mode, the external LVDS data and clock signals are generated using the same reference clock (inside the FPGA). The LDCLK clock is similar to a data bit that toggles each time (the rising edge and falling edge of the LDCLK and LVDS data occur at the same time). In automatic tuning, the internal compensation delay time (t_{cmp}) is defined automatically to compensate the internal DAC1617D1G0 delay time optimally.

The timing requirement in automatic tuning mode is defined in Figure 15 and in Table 5.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Use manual tuning mode if the LVDS data and the LDCLK clock signals provided to the DAC1617D1G0 device have a systematic delay. The compensation delay time can be adjusted to compensate for the systematic delay. The compensation delay time (t_{cmp} in Figure 14), can be defined using bits LDCLK_DEL[3:0] of register MAN_LDCLKDEL (see Table 55).

The timing requirement in manual tuning mode is defined in Figure 16 and in Table 5.

10.9 Operating modes

The DAC1617D1G0 requires two differential clocks:

- The LVDS clock (LDCLKP, LDCLKN) for the LVDS DDR interface
- The data clock (CLKP, CLKN) for the internal PLL and the dual DAC core

In Normal mode, provide both the DAC clock and the LVDS clock to the DAC1617D1G0. Align the ratio frequency between these two clocks needs with selected $\times 2$, $\times 4$ or $\times 8$ interpolation filters. The clocks provided to the DAC1617D1G0 must respect the LVDS input timing and the DAC output timing specifications as defined in <u>Table 5</u>.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

In PLL mode, provide the LVDS clock to pins LDCLKP/LDCLKN and pins CLKP/CLKN. Depending on selected interpolation filter, the internal PLL can be set to generate the right DAC core clock frequency internally. The clocks provided to the DAC1617D1G0 pins must respect the LVDS input timing and the DAC output timing specifications as defined in Table 5. The PLL settings must also respect the maximum sampling rate of the PLL (see the sampling rate (f_s) in subsection Internal PLL timing of Table 5).

The main function of the Clock Domain Interface (CDI) is to resynchronize the input data streams to the internal clock the digital processing uses. The CDI also performs the required reformatting of the input datastreams. Set PLL, CDI, and the interpolation filters, which depend on the targeted application accordingly. <u>Section 10.9.1</u> (×2), <u>Section 10.9.2</u> (×4), and <u>Section 10.9.3</u> (×8) explain how to set the DAC1617D1G0 to support the different upsampling modes.

10.9.1 CDI mode 0 (x2 interpolation)

CDI mode 0 (\times 2 interpolation) is required when the value of the LVDS DDR clock is twice the internal maximum CDI frequency. <u>Table 11</u> shows examples of applications using an internal PLL or an external clock for the DAC core.

LVDS DDR	S DDR I rate; CDI FIR mode ^[2] SSBM DAC rate		DAC rate	PLL configuration				
rate (MHz)	Q rate (Msps)	mode ^[1]		rate <mark>^[3]</mark> (Msps)	(Msps)	DAC input clock ^[4] (MHz)	PLL status ^[5]	PLL divider ^[6]
320	320	0	×2	640	640	320	enabled	2
320	320	0	×2	640	640	640	disabled	n.a.

Table 11. CDI mode 0: operating modes examples

[1] Bits CDI_MODE[1:0] of register MISC_CNTRL (see <u>Table 61</u>).

[2] Bits INTERPOLATION[1:0] of register TXCFG (see <u>Table 23</u>).

[3] If a Single Sideband Modulator (SSBM) is used, see bits NCO_ON and MODULATION[2:0] of register TXCFG (see Table 23).

[4] Pins CLKP and CLKN (see Figure 2).

[5] Bit PLL_PD of register PLLCFG (see Table 24).

[6] Bits PLL_DIV[1:0] of register PLLCFG (see <u>Table 24</u>).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.9.2 CDI mode 1 (x4 interpolation)

CDI mode 1 (×4 interpolation) is required when the values of the LVDS DDR clock and the internal CDI frequency are equal. <u>Table 12</u> shows examples of applications using an internal PLL or an external clock for the DAC core.

Table 12. CDI mode 1: operating modes examples

LVDS DDR	S DDR I rate; CDI FIR mode ^[2] SSBM DAC rate		DAC rate	PLL configuration				
rate (MHz)	Q rate (Msps)	mode		rate <u>l31</u> (Msps)	(Msps)	DAC input clock ^[4] (MHz)	PLL status ^[5]	PLL divider ^[6]
250	250	1	×4	1000	1000	250	enabled	4
250	250	1	×4	1000	1000	1000	disabled	n.a.

[1] Bits CDI_MODE[1:0] of register MISC_CNTRL (see Table 61).

- [2] Bits INTERPOLATION[1:0] of register TXCFG (see Table 23).
- [3] If SSBM is used, see bits NCO_ON and MODULATION[2:0] of register TXCFG (see Table 23).
- [4] Pins CLKP and CLKN (see Figure 2).
- [5] Bit PLL_PD of register PLLCFG (see Table 24).

[6] Bits PLL_DIV[1:0] of register PLLCFG (see <u>Table 24</u>).

10.9.3 CDI mode 2 (x8 interpolation)

CDI mode 2 (\times 8 interpolation) is required when the LVDS DDR clock is half the maximum CDI frequency or less. Table 13 shows examples of applications using an internal PLL or an external clock for the DAC core.

Table 13. CDI mode 2: operating modes examples

LVDS DDR	DS DDR I rate; CDI FIR mode ^[2] SSBM DAC rate		DAC rate	PLL configuration				
rate (MHz)	Q rate (Msps)	mode		rate <mark>^[3]</mark> (Msps)	(Msps)	DAC input clock ^[4] (MHz)	PLL status ^[5]	PLL divider ^[6]
125	125	2	×8	1000	1000	125	enabled	4
125	125	2	×8	1000	1000	1000	disabled	n.a.

[1] Bits CDI_MODE[1:0] of register MISC_CNTRL (see <u>Table 61</u>).

[2] Bits INTERPOLATION[1:0] of register TXCFG (see <u>Table 23</u>).

[3] If SSBM is used, see bits NCO_ON and MODULATION[2:0] of register TXCFG (see Table 23).

[4] Pins CLKP and CLKN (see Figure 2).

[5] Bit PLL_PD of register PLLCFG (see Table 24).

[6] Bits PLL_DIV[1:0] of register PLLCFG (see Table 24).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.10 FIR filters

The DAC1617D1G0 integrates three selectable Finite Impulse Response (FIR) filters which enable the use of the device with $\times 2$, $\times 4$ or $\times 8$ interpolation rates. All three interpolation FIR filters have a stop-band attenuation of at least 80 dBc and a pass-band ripple of less than 0.0005 dB. Table 14 shows the coefficients of the interpolation filters.

Integrated Device Technology

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

First interpolation filter Second interpolation filter Third interpolation filter Lower Upper Value Lower Upper Value Lower Upper Value H(27) +65536 H(11) +32768 +1024 _ H(7) --H(26) H(28) +41501 H(10) +20272 H(6) H(8) H(12) +615 H(25) H(29) H(9) H(13) H(5) H(9) 0 0 0 H(24) -13258 H(14) -5358 H(4) H(10) -127 H(30) H(8) H(23) H(31) 0 H(7) H(15) 0 H(3) H(11) 0 H(22) H(32) +7302 H(6) H(16) +1986 H(2) H(12) +27 H(21) H(1) 0 H(33) 0 H(5) H(17) 0 H(13) H(20) -4580 H(18) -654 H(0) H(14) -3 H(34) H(4) H(19) H(35) 0 H(3) H(19) 0 --_ H(18) +2987 H(20) H(36) H(2) +159---0 H(17) 0 H(1) H(21) H(37) ---H(16) -1951 H(38) H(0) H(22) -21 ---H(15) H(39) 0 ------H(14) H(40) +1250 _ _ _ _ --H(13) H(41) 0 -------773 H(12) H(42) ------H(11) 0 H(43) _ _ _ _ _ -H(10) H(44) +456 _ _ _ _ _ _ H(9) H(45) 0 -------252 H(8) H(46) _ _ _ _ --H(7) H(47) 0 _ -_ _ _ _ H(6) H(48) +128 ------H(5) 0 H(49) _ -_ _ --H(4) H(50) -58 _ _ _ _ _ -

Table 14: Interpolation filter coefficients

© IDT 2012. All rights reserved.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 14: Interpolation filter coefficients ...continued

First inter	polation fi	lter	Second interpolation filter			Third interpolation filter		
Lower	Upper	Value	Lower	Upper	Value	Lower	Upper	Value
H(3)	H(51)	0	-	-	-	-	-	-
H(2)	H(52)	+22	-	-	-	-	-	-
H(1)	H(53)	0	-	-	-	-	-	-
H(0)	H(54)	-6	-	-	-	-	-	-

Equation 1 defines the dependency of the FIR1 output Y(m) on its inputs X(m):

$$Y(m) = \frac{1}{H(27)} \times \sum_{n=0}^{n=54} [H(n):X(m-n)]$$
(1)

Equation 2 defines the dependency of the FIR2 output Y(m) on its inputs X(m):

$$Y(m) = \frac{1}{H(11)} \times \sum_{n=0}^{n=22} [H(n):X(m-n)]$$
(2)

Equation 3 defines the dependency of the FIR3 output Y(m) on its inputs X(m):

$$Y(m) = \frac{1}{H(7)} \times \sum_{n=0}^{n=14} [H(n):X(m-n)]$$
(3)

10.11 Single SideBand Modulator (SSBM)

The SSBM is a quadrature modulator that enables mixing the I data and Q data with the sine and cosine signals generated by the NCO to generate path A and path B (see Figure 20).

The frequency of the NCO is programmed over 40 bits. NCO enables inverting the sine component to operate a positive or negative, lower or upper SSB upconversion (see register TXCFG in <u>Table 23</u>).

10.11.1 NCO in 40 bits

When using NCO, the frequency can be set over 40 bits by five registers, FREQNCO_B0 to FREQNCO_B4 (see <u>Table 25</u>).

The frequency is calculated with Equation 4.

$$f_{NCO} = \frac{M \times f_s}{2^{40}} \tag{4}$$

Where:

- M is the two's complement coding representation of FREQ_NCO[39:0]
- f_s is the DAC clock sampling frequency

The default settings are:

- f_{NCO} = 96 MHz
- f_s = 640 Msps

Registers PHINCO_LSB and PHINCO_MSB over 16 bits from 0° to 360° (see Table 31) can set the phase of the NCO.

10.11.2 NCO low power

The five MSB-bits of register FREQNCO_B4 (bits FREQ_NCO[39:35]; see <u>Table 25</u>) can set the frequency, when using NCO low power (bit NCO_LP_SEL; see <u>Table 23</u>).

The frequency is calculated with <u>Equation 5</u>.

$$f_{NCO} = \frac{M \times f_s}{2^5} \tag{5}$$

Where:

- M is the two's complement coding representation of FREQ_NCO[39:35]
- fs is the DAC clock sampling frequency

The five MSB-bits of register PHINCO_MSB (see <u>Table 31</u>) can set the phase of the NCO low power.

10.11.3 Complex modulator

The complex modulator upconverts the single side band by mixing NCO signals and I and Q input signals. <u>Table 15</u> shows the various possibilities set by bits MODULATION[2:0] of register TXCFG (see <u>Table 23</u>).

The effect of the MODULATION parameter is better viewed after mixing the A and B signal with a LO frequency through an IQ modulator:

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

 Table 15.
 Complex modulator operation mode

MODULATION[2:0]	Mode	Path A	Path B
000	bypass	I(t)	Q(t)
001	positive upper sob	$I(t) \times cos(\omega_{NCO} \times t) - Q(t) \times sin(\omega_{NCO} \times t)$	$I(t) \times sin(\omega_{NCO} \times t) + Q(t) \times cos(\omega_{NCO} \times t)$
010	positive lower ssb	$I(t) \times \cos(\omega_{NCO} \times t) + Q(t) \times \sin(\omega_{NCO} \times t)$	$I(t) \times sin(\omega_{NCO} \times t) - Q(t) \times cos(\omega_{NCO} \times t)$
011	negative upper ssb	$I(t) \times \cos(\omega_{NCO} \times t) - Q(t) \times \sin(\omega_{NCO} \times t)$	$-I(t) \times \sin(\omega_{NCO} \times t) - Q(t) \times \cos(\omega_{NCO} \times t)$
100	negative lower ssb	$I(t) \times cos(\omega_{NCO} \times t) + Q(t) \times sin(\omega_{NCO} \times t)$	$-I(t) \times sin(\omega_{NCO} \times t) + Q(t) \times cos(\omega_{NCO} \times t)$
others	not defined	-	-

10.11.4 Minus 3dB

In normal use, a full-scale pattern is also full-scale at the DAC output. Nevertheless, when the I data and Q data come close to full-scale simultaneously, some clipping can occur. The Minus 3dB function (bit MINUS_3DB of register DAC_OUT_CTRL; see <u>Table 28</u>) can be used to reduce the 3 dB gain in the modulator. It retains a full-scale range at the DAC output without added interferers.

10.12 Inverse (sin x) / x

A selectable FIR filter is incorporated to compensate the $(\sin x) / x$ effect caused by the roll-off effect of the DAC. This filter has no effect at DC. It introduces a gain for high frequency. The coefficients are represented in <u>Table 16</u>. The filter response is presented in <u>Figure 22</u>.

Table 16. Inversion filter coefficients

First interpolation filter				
Lower	Upper	Value		
H(1)	H(9)	+1		
H(2)	H(8)	-4		
H(3)	H(7)	+13		
H(4)	H(6)	-51		
H(5)	-	+610		

Integrated Device Technology

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.13 Multiple Devices Synchronization (MDS)

Several DAC channels can be sampled synchronously and phase coherently using the MDS feature.

When all DAC slave devices of one system receive the same MDS signal (or at least a synchronous version of this reference) all devices are time-aligned at ± 1 DAC clock accuracy at the end of the synchronization process.

10.13.1 MDS concept

The FPGA(s) has(have) to activate the ALIGN pins to identify the LVDS data flow start (see Figure 23).

The ALIGN signal is used to generate a local reference inside the DAC1617D1G0 which is 'aligned' with the IQ-data.

The DAC1617D1G0 devices use the MDS signals to do the output synchronization (see Figure 24).

Integrated Device Technology

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

The signal detector of the DAC1617D1G0 detects the presence of the MDS signals. Once detected, an internal copy process of this reference starts. The MDS early/late detector block then compares the phase difference of these two signals to align the copy to its reference accurately. The alignment is done inside an "enabling window" that avoids the misinterpretation of the signal edges. This alignment process is done by moving the internal pointer of register MDS_ADJDELAY (see <u>Table 43</u>) (so inserting/removing a delay in data flow). This pointer can have a preset offset. This is specified by register MDS_OFFSET_DLY (see <u>Table 42</u>). Using the MDS_MAN and MDS_MAN_ADJDELAY bits in register MDS_MAN_ADJUSTLY register (see <u>Table 39</u>), the alignment can also be set manually.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

During the whole alignment process, the MDS controller tries to adjust the delay to get the internal copy signal aligned to the external MDS signal. Once aligned, the MDS signal is not required anymore. it can be switched off at system level. The alignment is done just in front of the analog DACs cores ensuring the ± 1 DAC clock sample accuracy.

At the end of the MDS process, the MDS circuitry is disabled to avoid any analog disturbances.

The MDS feature can be used in two modes:

- All slaves mode
- · Master/slaves mode

The mode can be set using the MD_MASTER bit of register MDS_MAIN (see Table 36).

10.13.1.1 MDS in All slaves mode

In this mode, each device uses its ALIGN pins signal to identify the LVDS data flow start (see Figure 23). The FPGA(s) has(have) to generate these ALIGN signals.

The FPGA is also used to generate the different MDS reference signals to enable the DAC1617D1G0 devices to do the synchronization of the output. Use this mode when two or more DAC1617D1G0 devices must be synchronized.

Figure 25 shows the MDS All slave mode schematic.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.13.1.2 MDS in Master/slaves mode

In this mode, one DAC1617D1G0 device is used as master, the other one is used as slave. The FPGA(s) still has(have) to provide the ALIGN signal to the DAC devices to identify the LVDS data flow start (see Figure 23). The master generates the reference MDS signal. The slave uses this signal to do the synchronization of the output. This mode is recommended when only two DAC1617D1G0 devices must be synchronized.

Figure 25 shows the MDS Master/slaves mode schematic.

10.13.2 MDS flexibility and constraints

Getting a ± 1 clock period alignment can become very difficult without the MDS feature. There are many sources of misalignment:

- At 1 GHz, two signals with only 15 cm PCB length difference have a 1 clock period skew. So the PCB traces off the FPGA reference clock, the LVDS data/clock, or the DAC clock introduce delay.
- The clock generation circuit can cause delay between the different clocks.
- The most important delay comes from the internal FPGA design that can cause 1 or 2 LVDS clock delays between the different LVDS data patterns.

The DAC1617D1G0 MDS feature compensates these delays when:

- The overall delay compensated by the DAC1617D1G0 remains below \pm 64 DAC clock.
- Each FPGA has to activate its ALIGN signal with the beginning of the LVDS data flow start (even if the different ALIGN signals are mis-aligned)

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

- All slave devices use the MDS signals for the fine alignment. Any misalignment between these signals causes misalignment on the output. Minimize the delay between the different MDS signals to avoid misalignments:
 - In All slave mode: Use a low skew buffer on the FPGA to generate this signal. Use the same PCB length for all MDS signal trace distributions.
 - In Master/slave mode: Minimize the MDS PCB length between the master and the slave (or compensate the introduced MDS PCB delay manually).

10.14 DAC transfer function

The full-scale output current for each DAC is the sum of the two complementary current outputs:

- $I_{OA(fs)} = I_{IOUTAP} + I_{IOUTAN}$
- $I_{OB(fs)} = I_{IOUTBP} + I_{IOUTBN}$

The output current of DAC A depends on the digital input data. Bits DAC_A_DGAIN[11:0] of register DAC_A_DGAIN_LSB (see <u>Table 27</u>) define the gain factor.

$$I_{IOUTAP} = I_{OA(fs)} \times \frac{(DACADGAIN)}{1024} \times \left(\frac{DATA}{65535}\right)$$
(6)

$$I_{IOUTAN} = I_{OA(fs)} \times \left(1 - \frac{(DACADGAIN)}{1024} \times \left(\frac{DATA}{65535} \right) \right)$$
(7)

The output current of DAC B depends on the digital input data. Bits DAC_B_DGAIN[11:0] of register DAC_B_DGAIN_LSB (see <u>Table 27</u>) define the gain factor.

$$I_{IOUTBP} = I_{OB(fs)} \times \frac{(DACBDGAIN)}{1024} \times \left(\frac{DATA}{65535}\right)$$
(8)

$$I_{IOUTBN} = I_{OB(fs)} \times \left(1 - \frac{(DACBDGAIN)}{1024} \times \left(\frac{DATA}{65535} \right) \right)$$
(9)

It is possible to define if the DAC1617D1G0 operates with a binary input or a two's complement input (bit CODING; see <u>Table 22</u>).

<u>Table 17</u> shows the output current as a function of the input data, when $I_{OA(fs)} = I_{OB(fs)} = 20$ mA.

Table 17.DAC transfer function

Data	I15 to I0/Q15 to Q0 (binary coding)	I15 to I0/Q15 to Q0 (two's complement coding	IOUTAP/IOUTBP	IOUTAN/IOUTBN
0	0000 0000 0000 0000	1000 0000 0000 0000	0 mA	20 mA
32768	1000 0000 0000 0000	0000 0000 0000 0000	10 mA	10 mA
65535	1111 1111 1111 1111	0111 1111 1111 1111	20 mA	0 mA

10.15 Full-scale current

10.15.1 Regulation

The DAC1617D1G0 reference circuitry integrates an internal band gap reference voltage which delivers a 1.25 V reference on the GAPOUT pin. Decouple pin GAPOUT using a 100 nF capacitor.

The reference current is generated via an external resistor of 910 Ω (1 %) connected to VIRES. A control amplifier sets the appropriate full-scale current ($I_{OA(fs)}$ and $I_{OB(fs)}$) for both DACs (see Figure 27).

Figure 27 shows the optimal configuration for temperature drift compensation because the band gap reference voltage can be matched to the voltage across the feedback resistor.

Applying an external reference voltage to the non-inverting input pin GAPOUT and disabling the internal band gap reference voltage (bit GAP_PON of the COMMON register; see <u>Table 22</u>) also adjust the DAC current.

10.15.2 Full-scale current adjustment

The default full-scale current $(I_{O(fs)})$ is 20 mA. However, further adjustments, ranging from 8.1 mA to 34 mA, can be made to both DACs independently using the serial interface.

The settings applied to DAC_A_GAIN[9:0] (registers 17h and 18h; see <u>Table 32</u>) define the full-scale current of DAC A:

$$I_{O(f_s)} (\mu A) = 8100 + \text{DAC}_A \text{_GAIN}[9:0] \times 25.3$$
(10)

The DAC_B_GAIN[9:0] (registers 19h and 1Ah; see <u>Table 32</u>;) define the full-scale current of DAC B:

$$I_{O(fs)}(\mu A) = 8100 + \text{DAC}_B_GAIN[9:0] \times 25.3$$
 (11)
Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.16 Limiter/clip control

A limiter at the end of the data path saturates the output signal in case the signal does not fit the output range. This feature is activated using the CLIPPING_ENA bit in register DAC_OUT_CTRL (see Table 28).

The clipping level can be programmed using the CLIPPING_LEVEL register (see <u>Table 29</u>.). The output range is limited (or clipped) to between -128x CLIPPING_LEVEL and +128x CLIPPING_LEVEL.

At the DAC analog output, the AC current range is limited to:

$$-\left(\frac{I_{O(FS)}}{2}\right) \times \left(\frac{CLIPPING_LEVEL}{256}\right) \le I_{IOUT} \le + \left(\frac{I_{O(FS)}}{2}\right) \times \left(\frac{CLIPPING_LEVEL}{256}\right)$$
(12)

10.17 Digital offset adjustment

The DAC1617D1G0 provides digital offset correction (bits DAC_A_OFFSET[15:0] in <u>Table 30</u>). This correction can be used to adjust the common-mode level at the output of each DAC. It adds an offset at the end of the digital part, just before the DACs. <u>Table 18</u> shows the range of variation of the digital offset.

This offset can be used to remove the LO image at the IQ modulator output.

DAC_A_OFFSET[15:0] DAC_B_OFFSET[15:0] (two's complement)	Offset applied
1000 0000 0000 0000	-32768
1000 0000 0000 0001	-32767
1111 1111 1111 1111	–1
0000 0000 0000 0000	0
0000 0000 0000 0001	+1
0111 1111 1111 1110	+32766
0111 1111 1111 1111	+32767

Table 18. Digital offset adjustment

10.18 Analog output

The device has two output channels, producing two complementary current outputs, which enable the reduction of even-order harmonics and noise. The pins are IOUTAP/IOUTAN and IOUTBP/IOUTBN. Connect these pins via a load resistor R_L to the 3.3 V analog power supply ($V_{DDA(3V3)}$).

Figure 28 shows the equivalent analog output circuit of one DAC. This circuit includes a parallel combination of NMOS current sources and associated switches for each segment.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

The cascode source configuration increases the output impedance of the source, which improves the dynamic performance of the DAC because there is less distortion.

Depending on the application, the various stages and the targeted performances, the device can be used for an output level of up to 2 V (p-p).

10.19 Auxiliary DACs

The DAC1617D1G0 integrates two auxiliary DACs, which are used to compensate any offset between the DACs and the next stage in the transmission path. Both auxiliary DACs have a 10-bit resolution and are current sources (referenced to ground).

The full-scale output current for each DAC is the sum of the two complementary current outputs:

- $I_{OAUXA(fs)} = I_{AUXAP} + I_{AUXAN}$
- $I_{OAUXB(fs)} = I_{AUXBP} + I_{AUXBN}$

The output current depends on the digital input data set by SPI registers DAC_A_Aux_MSB (bits AUX_A[9:0]) and DAC_B_Aux_MSB (bits AUX_B[9:0]; see Table 33).

$$I_{AUXAP} = I_{OAUXA(fs)} \times \left(\frac{DATAA}{1023}\right)$$
(13)

$$I_{AUXAN} = I_{OAUXA(fs)} \times \left(\frac{1023 - DATAA}{1023}\right)$$
(14)

$$I_{AUXBP} = I_{OAUXB(fs)} \times \left(\frac{DATAB}{1023}\right)$$
(15)

$$I_{AUXBN} = I_{OAUXB(fs)} \times \left(\frac{1023 - DATAB}{1023}\right)$$
(16)

DAC1617D1G0 Product data sheet

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

<u>Table 19</u> shows the output current as a function of the auxiliary DACs data DATAA and DATAB in Equation 13 to Equation 16.

Table 19. Auxiliary DAC transfer function

DATAA; DATAB	AUX_A[9:2]/AUX_A[1:0]; AUX_B[9:0]/AUX_B[1:0] (binary coding)	I _{AUXAP} ; I _{AUXBP} (mA)	I _{AUXAN} ; I _{AUXBN} (mA)
0	00 0000 0000	0	3.1
512	10 0000 0000	1.55	1.55
1023	11 1111 1111	3.1	0

10.20 Output configuration

The DAC1617D1G0 supports various output configurations.

The system application must check that for IOUTA/IOUTB output, the output compliance range (V_o) and the common-mode output voltage ($V_{o(cm)}$) specification points are respected to define other configurations.

Similarly, the system application must check that the output compliance range (V_o) specification point is respected for AUXA/AUXB DAC (if used).

The common-mode voltage ($V_{o(cm)}$) value for each IOUTA/IOUTB pin depends on the DC resistor(s) connected to these pins and the IOUT DC sink currents on these pins.

Equation 17 defines the DC sink output current is:

$$I_{O(sink)} (DC) = I_{bias} (DC) + \frac{I_{O(fs)}}{2}$$
(17)

Where:

- I_{O(fs)} = full-scale output current
- I_{bias} (DC) = DC bias current

The common-mode voltage ($V_{o(cm)}$) value for each AUXA/AUXB pins depend on the DC resistor(s) connected to these pins and the AUX DC source currents.

Equation 18 defines these AUX DC source currents:

$$I_{O(source)}(DC) = \frac{I_{O(fs)}}{2}$$
(18)

Where:

• $I_{O(fs)} =$ full-scale output current

The output compliance range (V_o) of all DAC outputs depends on the AC resistor load connected to the DAC:

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

$$V_{O(max)} = V_{O(cm)} + \frac{I_{O(fs)}}{2} \times R_{AC}$$
⁽¹⁹⁾

$$V_{O(min)} = V_{O(cm)} - \frac{I_{O(fs)}}{2} \times R_{AC}$$
⁽²⁰⁾

Where:

- V_{O(cm)} = common-mode output voltage
- I_{O(fs)} = full-scale output current
- R_{AC} = DAC outputs AC resistor load

10.20.1 Basic output configuration

The use of a differentially coupled transformer output (see Figure 29) provides optimum distortion performance. In addition, it helps to match the impedance and provides electrical isolation.

The DAC1617D1G0 can operate a differential output of up to 2 V (p-p). In this configuration, connect the center tap of the transformer to a 33 Ω resistor, which is connected to the 3.3 V analog power supply. This adjusts the DC common-mode to around 2.8 V (see Figure 30).

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.20.2 Low input impedance IQ-modulator interface

The DAC1617D1G0 can be easily connected to low input impedance IQ-modulators. The image of the local oscillator can be canceled using the digital offset control in the device.

Figure 31 shows an example of a connection between the DAC1617D1G0 and a low input impedance modulator.

10.20.3 IQ-modulator - DC interface

When the system operation requires to keep the DC component of the spectrum, the DAC1617D1G0 can use a DC interface to connect an IQ-modulator. In this case, the image of the local oscillator can be canceled using the digital offset control in the device.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Figure 32 shows an example of a connection to an IQ modulator with a 1.7 V common input level.

Figure 33 shows an example of a connection to an IQ-modulator with a 3.3 V common input level.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

The auxiliary DACs can be used to control the offset within an accurate range or with accurate steps.

Figure 34 shows an example of a connection to an IQ-modulator with a 1.7 V common input level and auxiliary DACs.

The constraints to adjust the interface are:

- The output compliance range of the DAC
- The output compliance range of the auxiliary DACs
- The input common-mode level of the IQ-modulator
- The range of offset correction

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.20.4 IQ-modulator - AC interface

Use the DAC1617D1G0 AC-coupled when the IQ-modulator common-mode voltage is close to ground. The auxiliary DACs are required for local oscillator cancelation.

Figure 35 shows an example of a connection to an IQ-modulator with a 0.5 V common input level and auxiliary DACs.

10.21 Design recommendations

10.21.1 Power and grounding

Use a separate power supply regulator for the generation of the 1.8 V analog power (pins 65, 62, 55, 69, 72 and 58) and the 1.8 V digital power (pins 12, 19, 36, 26 and 43) to ensure optimal performance.

Also, include individual LC decoupling for the following six sets of power pins:

- V_{DDA(1V8) P1} (pin 62)
- V_{DDA(1V8)} P2 (pin 65)
- V_{DDA(1V8)} (pins 55, 69, 72 and 58)
- V_{DDD} (pins 12, 19, 26, 36, and 43)
- V_{DDA(3V3)} (pins 59 and 68)

Use at least two capacitors for each power pin decoupling. Locate these capacitors as close as possible to the DAC1617D1G0 power pins.

The die pad is used for both the power dissipation and electrical grounding. Insert several vias $(7 \times 7 \text{ typical})$ to connect the internal ground plane to the top layer die area.

10.22 Configuration interface

10.22.1 Register description

The DAC1617D1G0 incorporates more than the 32 SPI registers allowed by the address value A[4:0]. It uses three SPI register pages (page_00, page_01, and page_0A), each containing 32 registers. The 32nd register of each page indicates which page is currently addressed (00h, 01h or 0Ah).

Page 00h (see Table 21) is dedicated to the main control of the DAC1617D1G0:

- Mode selection
- NCO control
- Auxiliary DAC control
- Gain/phase/offset control
- Power-down control

Page 01h (see Table 35) is dedicated to:

- Multi-Device Synchronization (MDS)
- DAC analog core control (biasing current, Sleep mode)

Page 0Ah (see <u>Table 53</u>) is dedicated to the LVDS input interface configuration.

10.22.2 SPI start-up sequence

The following SPI sequence shows the list of commands to be used to start the DAC1617D1G25 in interpolation \times 4 mode, with NCO frequency = 153.6 MHz (f_{DAC} = 983.04 MHz), PLL bypass mode, and without inverse (sin x) / x. Other start-up sequences can be easily derived from this sequence:

Table 20. SPI start-up sequence

Step	SPI (address, data)	Comment
1	Write(0x1F, 0x00)	select SPI (page 0)
2	Write(0x00, 0x47)	reset SPI
3	Write(0x01, 0x86)	set NCO on with positive upper sideband conversion, interpolation $\times 4$, No inverse (sin x) / x
4	Write(0x02, 0xA0)	PLL in bypass mode
5	Write(0x04, 0xFF)	select NCO frequency (FREQ_NCO[7:0])
6	Write(0x05, 0xFC)	select NCO frequency (FREQ_NCO[15:8])
7	Write(0x06, 0xFF)	select NCO frequency (FREQ_NCO[23:16])
8	Write(0x07, 0xFF)	select NCO frequency (FREQ_NCO[31:24])
9	Write(0x08, 0x27)	select NCO frequency (FREQ_NCO[39:32])
10	Write(0x1F, 0x01)	select SPI (page 1)
11	Write(0x15,0x0A)	set DAC_current_6 to 0X0A in order to guaranty good performance over process/temperature/voltage
12	Write(0x1F, 0x0A)	select SPI (page A)

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 20. SPI start-up sequence ...continued

Step	SPI (address, data)	Comment
13	Write(0x0A, 0x33)	specify LVDS interface setting (no DAC A/B swapping, no parity check, no data enable,)
14	Write(0x0B, 0x01)	set CDI block setting (interpolation ×4, CDI mode)
15	Write(0x00, 0x00)	release LVDS reset (start of the DAC1617)

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.22.3 Page 0 register allocation map

Table 21 shows an overview of all registers on page 0 (00h in hexadecimal).

Table 21.	Page_	00	register	allocation	map
			<u> </u>		

she	Ade	dress	Register name	R/W				Bit	definition				Defau	ılt
ĕt					Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin	Hex
	0	00h	COMMON	R/W	3W_SPI	SPI_RST	-	-	-	CODING	IC_PON	GAP_PON	1000 0111	87h
	1	01h	TXCFG	R/W	NCO_ON	NCO_LP _SEL	INV_SIN _SEL		MODULATIC	DN[2:0]	INTERPO	LATION[1:0]	0000 0001	01h
	2	02h	PLLCFG	R/W	PLL_BP	PLL_BUF _PD	PLL_PLL _PD	PLI	DIV[1:0]	PLL_PHAS	SE[1:0]	PLL_ OSC_PD	1010 0001	A1h
	4	04h	FREQNCO_B0	R/W				FRE	Q_NCO[7:0]				0110 0110	66h
Rev	5	05h	FREQNCO_B1	R/W				FREG	Q_NCO[15:8]				0110 0110	66h
. 4 – 1	6	06h	FREQNCO_B2	R/W		FREQ_NCO[23:16]						0110 0110	66h	
2 Dece	7	07h	FREQNCO_B3	R/W		FREQ_NCO[31:24]					0010 0110	66h		
mber 2	8	08h	FREQNCO_B4	R/W		FREQ_NCO[39:32]					0010 0110	26h		
012	9	09h	PH_CORR_CTL0	R/W				PHAS	SE_COR[7:0]				0000 0000	00h
	10	0Ah	PH_CORR_CTL1	R/W	PH_COR _ENA	-	-			PHASE_COR[1]	2:8]		0000 0000	00h
	11	0Bh	DAC_A_DGAIN_LSB	R/W				DAC_	A_DGAIN[7:0]				1101 0100	50h
	12	0Ch	DAC_A_DGAIN_MSB	R/W	-	-	-	-		DAC_A_DGA	IN[11:8]		0000 1011	0Bh
	13	0Dh	DAC_B_DGAIN_LSB	R/W				DAC_	B_DGAIN[7:0]				1101 0100	50h
© IDT 2	14	0Eh	DAC_B_DGAIN_MSB	R/W	-	-	-	-		DAC_B_DGA	IN[11:8]		0000 0010	0Bh
012. All right	15	0Fh	DAC_OUT_CTRL	R/W	-	-	-	-	A_DGAIN_E	B_DGAIN_E	MINUS _3DB	CLIPPING _ENA	0000 0000	00h
reserved.														

DAC1617D1G0 Product data sheet

Rev. 4 Ì 12 December 2012

16170	Add	dress	Register name	R/W	Bit definition							Default		
01G0					Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin	Hex
	16	10h	DAC_CLIPPING	R/W				CLIPPIN	IG_LEVEL[7:0]				1111 1111	FFh
	17	11h	DAC_A_OFFSET_LSB	R/W				DAC_A	_OFFSET[7:0]				0000 0000	00h
	18	12h	DAC_A_OFFSET_MSB	R/W				DAC_A_	OFFSET[15:8]				0000 0000	00h
	19	13h	DAC_B_OFFSET_LSB	R/W				DAC_B	_OFFSET[7:0]				0000 0000	00h
	20	14h	DAC_B_OFFSET_MSB	R/W				DAC_B_	OFFSET[15:8]				0000 0000	00h
	21	15h	PHINCO_LSB	R/W		PH_NCO[7:0]						0000 0000	00h	
	22	16h	PHINCO_MSB	R/W		PH_NCO[15:8]						0000 0000	00h	
	23	17h	DAC_A_GAIN1	R/W		DAC_A_GAIN[7:0]					1101 1000	D8h		
	24	18h	DAC_A_GAIN2	R/W	DAC_A_(DAC_A_GAIN[9:8]					0100 0000	40h		
	25	19h	DAC_B_GAIN1	R/W				DAC_	B_GAIN[7:0]				1101 1000	D8h
	26	1Ah	DAC_B_GAIN2	R/W	DAC_B_C	GAIN[9:8]	-	-	-	-	-	-	0100 0000	40h
	27	1Bh	DAC_A_AUX_MSB	R/W				AL	JX_A[9:2]				1000 0000	80h
	28	1Ch	DAC_A_AUX_LSB	R/W	AUX_A _PON	-	-	-	-	-	AUX_	_A[1:0]	1000 0000	80h
	29	1Dh	DAC_B_AUX_MSB	R/W				AL	JX_B[9:2]				1000 0000	80h
0	30	1Eh	DAC_B_AUX_LSB	R/W	AUX_B _PON	-	-	-	-	-	AUX_	_B[1:0]	1000 0000	80h
IDT 2012. /	31	1Fh	PAGE_ADDRESS	R/W	-	-	-	-	-		PAGE[2:0]		0000 0000	00h
- VII riahts								, I						

Integrated Device Technology

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

DAC1617D1G0

Product data sheet

DAC

 Table 21.
 Page_00 register allocation map ...continued

Rev. 4 — 12 December 2012

48 of 78

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.22.4 Page 0 bit definition detailed description

The tables in this section contain detailed descriptions of the page 0 registers.

Table 22. Register COMMON (address 00h) bit description Default values are shown highlighted.

	0 0			
Bit	Symbol	Access	Value	Description
7	3W_SPI	R/W		serial interface bus type
			0	4-wire SPI
			1	3-wire SPI
6	SPI_RST	R/W		serial interface reset
			0	no reset
			1	performs a reset on all registers except address 00h
2	CODING	R/W		coding of input word
			0	two's complement coding
			1	unsigned format
1	IC_PON	R/W		IC power control
			0	all circuits (digital and analog, except SPI) are in power-down
			1	all circuits (digital and analog, except SPI) are switched on
0	GAP_PON	R/W		internal band gap power control
			0	band gap is power-down
			1	internal band gap references are switched on

Table 23.Register TXCFG (address 01h) bit descriptionDefault values are shown highlighted.

Bit	Symbol	Access	Value	Description
7	NCO_ON	R/W		NCO
			0	NCO disabled, the NCO phase is reset to 0
			1	NCO enabled
6	NCO_LP_SEL	R/W		NCO low-power selection
			0	low-power NCO disabled
			1	low-power NCO enabled (frequency and phase given by the five MSB of the registers 06h and 08h, respectively)
5	INV_SIN_SEL	R/W		inverse (sin x) / x function selection
			0	disable
			1	enable
4 to 2	MODULATION[2:0]	R/W		modulation
			000	dual DAC: no modulation
			001	positive upper single sideband upconversion
			010	positive lower single sideband upconversion
			011	negative upper single sideband upconversion
			100	negative lower single sideband upconversion
			others	not defined

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 23. Register TXCFG (address 01h) bit description ... continued

Default values are shown highlighted.

3 3 5			
Symbol	Access	Value	Description
INTERPOLATION[1:0]	RPOLATION[1:0] R/W		interpolation
		00	no interpolation
		01	×2 interpolation
		10	×4 interpolation
		11	×8 interpolation
	Symbol INTERPOLATION[1:0]	Symbol Access INTERPOLATION[1:0] R/W	Symbol Access Value INTERPOLATION[1:0] R/W 00 01 10 11

Table 24.Register PLLCFG (address 02h) bit descriptionDefault values are shown highlighted.

	0 0			
Bit	Symbol	Access	Value	Description
7	PLL_BP	R/W		PLL bypass
			0	DAC clock generated by PLL
			1	DAC clock provided via external pins CLKN and CLKP (PLL bypass mode)
6	PLL_BUF_PD	R/W		PLL test buffer control
			0	Power-down mode
			1	enabled
5	PLL_PLL_PD	R/W		PLL and CKGEN control
			0	Power-down mode
			1	enable
4 to 3	PLL_DIV[1:0]	R/W		PLL divider factor
			00	$f_s = 2 \times f_{data}$
			01	$f_s = 4 \times f_{data}$
			10	$f_s = 8 \times f$
			11	undefined
2 to 1	PLL_PHASE[1:0]	R/W		PLL phase shift
			00	0 degrees phase shift of f _s
			01	120 degrees phase shift of f _s
			10	240 degrees phase shift of fs
			11	240 degrees phase shift of fs
0	PLL_OSC_PD	R/W		PLL oscillator output power-down
			0	Power-down mode
			1	enabled

Table 25. NCO frequency registers (address 04h to 08h) bit description

Address	Register	Bit	Symbol	Access	Value	Description
04h	FREQNCO_B0	7 to 0	FREQ_NCO[7:0]	R/W		NCO frequency (two's complement coding)
					-	least significant 8 bits for the NCO frequency setting
05h	FREQNCO_B1	7 to 0	FREQ_NCO[15:8]	R/W	-	intermediate 8 bits for the NCO frequency setting

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 25. NCO frequency registers (address 04h to 08h) bit description ... continued

Default values are shown highlighted. Register Bit Address Symbol Access Value Description 06h FREQNCO B2 7 to 0 FREQ_NCO[23:16] R/W intermediate 8 bits for the NCO frequency setting intermediate 8 bits for the NCO 07h FREQNCO_B3 7 to 0 FREQ_NCO[31:24] R/W _ frequency setting 08h most significant 8 bits for the NCO FREQNCO B4 7 to 0 FREQ NCO[39:32] R/W _ frequency setting

Table 26. DAC output phase correction registers (address 09h to 0Ah) bit description Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
09h	PH_CORR_CTL0	7 to 0	PHASE_COR[7:0]	R/W		DAC output phase correction factor (LSB)
					-	least significant 8 bits for the DAC output phase correction factor
0Ah	PH_CORR_CTL1	7	PH_COR_ENA	R/W		DAC output phase correction control
					0	DAC output phase correction disabled
					1	DAC output phase correction enabled
		4 to 0	PHASE_COR[12:8]	R/W		DAC output phase correction factor MSB
					00000	most significant 5 bits for the DAC output phase correction factor

Table 27. Digital gain control registers (address 0Bh to 0Eh) bit description Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0Bh	DAC_A_DGAIN_LSB	7 to 0	DAC_A_DGAIN[7:0]	R/W		DAC A digital gain control
					-	least significant 8 bits for the DAC A digital gain
0Ch	DAC_A_DGAIN_MSB	3 to 0	DAC_A_DGAIN[11:8]		-	most significant 4 bits for the DAC A digital gain
0Dh	DAC_B_DGAIN_LSB	7 to 0	DAC_B_DGAIN[7:0]	R/W		DAC B digital gain control
					-	least significant 8 bits for the DAC B digital gain
0Eh	DAC_B_DGAIN_MSB	3 to 0	DAC_B_DGAIN[11:8]		-	most significant 4 bits for the DAC B digital gain

Table 28. Register DAC_OUT_CTRL (address 0Fh) Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
3 A	A_DGAIN_E	R/W		DAC A digital gain control
			0	disable
			1	enable

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 28. Register DAC_OUT_CTRL (address 0Fh) ...continued

Default values are shown highlighted.

	alabe ale elletti ligiligiliea			
Bit	Symbol	Access	Value	Description
2	B_DGAIN_E	R/W		DAC B digital gain control
			0	disable
			1	enable
1	MINUS_3DB	R/W		DAC attenuation control
			0	unity gain
			1	–3 dB gain
0	CLIPPING_ENA	R/W		Digital DAC output clipping control
			0	disable
			1	enable

Table 29. Register DAC_CLIPPING (address 10h)

Default values are shown highlighted.

Bit	Symbol	Access Value		Description		
7 to 0	CLIPPING_LEVEL[7:0]	R/W	-	Digital DAC output clipping level value		

Table 30. Digital offset value registers (address 11h to 14h) bit description

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
11h	DAC_A_OFFSET_LSB	7 to 0	DAC_A_OFFSET[7:0]	R/W		DAC A digital offset value
					-	least significant 8 bits for the DAC A digital offset
12h	DAC_A_OFFSET_MSB	7 to 0	DAC_A_OFFSET[15:8]		-	most significant 8 bits for the DAC A digital offset
13h	DAC_B_OFFSET_LSB	7 to 0	DAC_B_OFFSET[7:0]	R/W		DAC B digital offset value
					-	least significant 8 bits for the DAC B digital offset
14h	DAC_B_OFFSET_MSB	7 to 0	DAC_B_OFFSET[15:8]		-	most significant 8 bits for the DAC B digital offset

Table 31.NCO phase offset registers (address 15h to 16h) bit descriptionDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
15h	PHINCO_LSB	7 to 0	PH_NCO[7:0]	R/W		NCO phase offset LSB
					-	least significant 8 bits for the NCO phase setting
16h	PHINCO_MSB	7 to 0	PH_NCO[15:8]	R/W		NCO phase offset MSB
					-	most significant 8 bits for the NCO phase setting

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 32. Analog gain control registers (address 17h to 1Ah) bit description Default values are shown highlighted

Delault Value	es ale shown nigh	ignieu.				
Address	Register	Bit	Symbol	Access	Value	Description
17h	DAC_A_GAIN1	7 to 0	DAC_A_GAIN[7:0]	R/W	-	DAC A analog gain control (LSB)
18h	DAC_A_GAIN2	7 to 6	DAC_A_GAIN[9:8]	R/W	-	DAC A analog gain control (MSB)
19h	DAC_B_GAIN1	7 to 0	DAC_B_GAIN[7:0]	R/W	-	DAC B analog gain control (LSB)
1Ah	DAC_B_GAIN2	7 to 6	DAC_B_GAIN[9:8]	R/W	-	DAC B analog gain control (MSB)

Table 33. Auxiliary DAC registers (address 1Bh to 1Eh) bit description

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
1Bh	DAC_A_AUX_MSB	7 to 0	AUX_A[9:2]	R/W	-	most significant 8 bits for auxiliary DAC A
1Ch	DAC_AUX_LSB	7	AUX_A_PON	R/W		auxiliary DAC A power
					0	off
					1	on
		1 to 0	AUX_A[1:0]	R/W	-	least significant 2 bits for auxiliary DAC A
1Dh	DAC_B_AUX_MSB	7 to 0	AUX_B[9:2]	R/W	-	most significant 8 bits for auxiliary DAC B
1Eh	DAC_B_AUX_LSB	7	AUX_B_PON	R/W		auxiliary DAC B power
					0	off
					1	on
		1 to 0	AUX_B[1:0]	R/W	-	least significant 2 bits for auxiliary DAC B

Table 34. SPI_PAGE register (address 1Fh) bit description

Bit	Symbol	Access	Value	Description
2 to 0	PAGE[2:0]	R/W	-	SPI page address

10.22.5 Page 1 allocation map

Table 35 shows an overview of all registers on page 1 (01h in hexadecimal).

Table 35. Page 1 register allocation map

۸d	droce	Register name	B/W	N Bit definition							Dofeu	u+[1]	
Au	uie55	negister name	F1/ VV		D '' 0		Dit u		D !! 0	D !! (D 11 0	Delau	
				Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin	Hex
0	00h	MDS_MAIN	R/W	MDS_EQC	HECK[1:0]	MDS_ RUN	MDS_ NCO	MDS_ NCO_ PULSE	MDS_ SREF_ DIS	MDS_ MASTER	MDS_ ENA	0000 0100	04h
1	01h	MDS_WIN_ PERIOD_A	R/W				MDS_WIN_	PERIOD_A[7:0	0]			1000 0000	80h
2	02h	MDS_WIN_ PERIOD_B	R/W			MDS_WIN_PERIOD_B[7:0]							
3	03h	MDS_ MISCCNTRL0	R/W	-	-	MDS_ MDS_ MDS_PULSEWIDTH[2:0] EVAL_ PRERUN_E ENA						0001 0000	10h
4	04h	MDS_MAN_ ADJUSTDLY	R/W	MDS_ MAN	MDS_MAN_ADJUSTDLY[6:0]							0100 0000	40h
5	05h	MDS_AUTO_ CYCLES	R/W			MDS_AUTO_CYCLES[7:0]							80h
6	06h	MDS_ MISCCNTRL1	R/W	MDS_SR_ CKEN	MDS_SR_ LOCKOUT	MDS_ SR_LOCK	MDS_ RELOCK		MDS_LOCK_	_DELAY[3:0]		0000 1111	0Fh
7	07h	MDS_ OFFSET_DLY	RW	-	-	-		MDS	_OFFSET_DL\	/[4:0]		0000 0000	00h
8	08h	MDS_ ADJDELAY	RW	-			ME	DS_ADJDELAY	′[6:0]			0000 0000	00h
9	09h	MDS_ STATUS0	R	EARLY	LATE	EQUAL	MDS_EQ	EARLY_ ERROR	LATE_ ERROR	EQUAL_ FOUND	MDS_ ACTIVE	นนนน นนนน	uuh
10	0Ah	MDS_ STATUS1	R	-	-	ADD_ERR	MDS_EN_	PHASE[1:0]	MDS_ PRERUN	MDS_ LOCKOUT	MDS_ LOCK	นนนน นนนน	uuh
11	0Bh	INTR_CTRL	R/W	-	-	-	-	-	- INTR_ INTR_MON_DCLK_ CLEAR RANGE			0000 0100	04h
12	0Ch	INTR_EN	R/W	MAQB_EN	MAQA_EN	AUTO_DL_ EN	AUTO_CAL _EN	FLAG_DL_E N	LCLKSAMP_ EN	PARBER_ EN	MON_DCLK _EN	0000 0000	00h
13	0Dh	INTR_FLAGS	R	MAQB_ RDY	MAQA_ RDY	AUTO_ AUTO_ FLAG_ LCLKSAMP_ PARBER_ MON_DCLK DL_RDY CAL_RDY DL_ERR ERR ERR ERR					MON_DCLK _ERR	นนนน นนนน	uuh

Product data sheet

Rev. 4 — 12 December 2012

All rights reserved. 54 of 78

Integrated Device Technology

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating DAC1617D1G0

1617[Add	dress	Register name	R/W		Bit definition								
ct da					Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin	Hex
ata sheet	14	0Eh	DAC_ CURRENT_ AUX	R/W	-	-	-	-		DAC_AUX	_BIAS[3:0]		0000 0111	07h
	15	0Fh	DAC_ CURRENT_0	R/W	-	-	-	-		DAC_DIG_	BIAS[3:0]		0000 0111	07h
	16	10h	DAC_ CURRENT_1	R/W	-	-	-	-		DAC_MST	DAC_MST_BIAS[3:0]			
	17	11h	DAC_ CURRENT_2	R/W	-	DAC_DRV_BIAS[3:0]						0000 0111	07h	
Re	18	12h	DAC_ CURRENT_3	R/W	-	-	-	-	DAC_SLV_BIAS[3:0]					07h
	19	13h	DAC_ CURRENT_4	R/W	-	-	-	-		DAC_CK_BIAS[3:0]				
·. 4 — 1	20	14h	DAC_ CURRENT_5	R/W	-	-	-	-		DAC_CAS	_BIAS[3:0]		0000 0111	07h
2 Dece	21	15h	DAC_ CURRENT_6	R/W	-	-	-	-		DAC_COM	_BIAS[3:0]		0000 0111	07h
mber 201	22	16h	DAC_PON_ SLEEP	R/W	DAC_B_ PON	DAC_B_ SLEEP	DAC_B_ COM_PD	DAC_B_ BLEED_ PD	DAC_A_ PD	DAC_A_ SLEEP	DAC_A_ COM_PD	DAC_A_ BLEED_ PD	10111 011	BBh
N	23	17h	DAC_CLKDIG_ DELAY	R/W	-	-	-	-	- PLL_DIG_DELAY[2:0]			0000 0010	02h	
	31	1Fh	PAGE_ ADDRESS	R/W	-	-	-	-	-	- PAGE[2:0]				

[1] u = undefined at power-up or after reset.

© IDT 2012. All rights reserved. 55 of 78

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.22.6 Page 1 bit definition detailed description

The tables in this section contain detailed descriptions of the page 1 registers.

Table 36. MDS_MAIN register (address 00h) bit description Default values are shown highlighted

	3 3			
Bit	Symbol	Access	Value	Description
7 to 6	MDS_EQCHECK[1:0]	R/W		lock mode
			00	lock when (early = 1 and late = 1)
			01	lock when (early = 1, late = 1 and equal = 1)
			10	lock when equal = 1
			11	force lock (equal-check = 1)
5	MDS_RUN	R/W		evaluation process restart control
			0	no action
			1	$(0 \ge 1)$ transition restarts evaluation_counter
4	MDS_NCO	R/W		NCO synchronization
			0	no action
			1	enable
3	MDS_NCO_PULSE	R/W		NCO pulse
			0	no action
			1	manual control NCO tuning
2	MDS_SREF_DIS	R/W		internal pulse generation
			0	normal mode
			1	disable
1	MDS_MASTER	R/W		MDS mode selection
			0	slave mode
			1	master mode
0	MDS_ENA	R/W		MDS function control
			0	disable
			1	enable

Table 37. MDS window time registers (address 01h to 02h) bit description Legend: * reset value; <= mandatory value</td>

Address	Register	Bit	Symbol	Access	Value	Description
01h	MDS_WIN_PERIOD_A	7 to 0	MDS_WIN_ PERIOD_A[7:0]	R/W	-	determines MDS window LOW time
02h	MDS_WIN_PERIOD_B	7 to 0	MDS_WIN_ PERIOD_B[7:0]	R/W	-	determines MDS window HIGH time

Table 38. MDS_MISCCNTRL0 register (address 03h) bit description

Bit	Symbol	Access	Value	Description
4	MDS_EVAL_ENA	R/W		MDS evaluation
			0	disable
			1	enable

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 38. MDS_MISCCNTRL0 register (address 03h) bit description ... continued

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
3	MDS_PRERUN_ENA	R/W		automatic MDS start-up
			0	no mds_win/mds_ref generation in advance
			1	mds_win/mds_ref run-in before mds_evaluation
2 to 0	MDS_PULSEWIDTH[2:0]	R/W		width of MDS (in output clock -periods)
			000	1 DAC clock period
			001	2 DAC clock periods
			010 to 111	(mds_pulsewidth – 1) \times 4 DAC clock periods

Table 39. MDS_MAN_ADJUSTDLY register (address 04h) bit description

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
7	MDS_MAN	R/W		adjustment delays mode
			0	auto-control adjustment delays
			1	manual control adjustment delays
6 to 0	MDS_MAN_ADJUSTDLY[6:0]	R/W		adjustment delay value
			-	if MDS_MAN = 0 then initial value adjustment delay
			-	if MDS_MAN = 1 then controls adjustment delay

Table 40. MDS_AUTO_CYCLES register (address 05h) bit description Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	MDS_AUTO_CYCLES[7:0]	R/W	-	number of evaluation cycles applied for MDS. If set to 255, the IC continuously generates/monitors the MDS pulse

Table 41. MDS_MISCCNTRL1 register (address 06h) bit description

Bit	Symbol	Access	Value	Description
7	MDS_SR_CKEN	R/W	-	lock mode
			0	free-running MDS_SR_CKEN
			1	MDS_SR_CKEN forced low
6	MDS_SR_LOCKOUT	R/W		lockout detector soft reset
			0	MDS_SR_LOCKOUT in use
			1	MDS_SR_LOCKOUT forced low
5	MDS_SR_LOCK	R/W		lock detector soft reset
			0	MDS_SR_LOCK in use
			1	MDS_SR_LOCK forced low
4	MDS_RELOCK	R/W		relock mode
			0	no action
			1	relock when lockout occurs
3 to 0	MDS_LOCK_DELAY[3:0]	R/W	-	number of succeeding 'equal' detections until lock

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 42. MDS_OFFSET_DLY register (address 07h) bit description

Default values are shown highlighted.

	33			
Bit	Symbol	Access	Value	Description
4 to 0	MDS_OFFSET_DLY[6:0]	R/W	-	delay offset for dataflow (two's complement [-16 to 15]

Table 43. MDS_ADJDELAY register (address 08h) bit description

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
6 to 0	MDS_ADJDELAY[6:0]	R	-	actual value adjustment delay

Table 44. MDS status registers (address 09h to 0Ah) bit description

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
09h	MDS_STATUS0	7	EARLY	R		early signal (sampled) from early-to-late detector
					0	false
					1	true
		6	LATE	R		late signal (sampled) from early-to-late detector
					0	false
					1	true
		5	EQUAL	R		equal signal (sampled) from early-to-late detector
					0	false
					1	true
		4	MDS_LOCK	R		result equal-check
					0	false
					1	true
		3	EARLY_ERROR	R		adjustment delay maximum value stops the search
					0	false
					1	true
		2	LATE_ERROR	R		adjustment delay minimum value stops the search
					0	false
					1	true
		1	EQUAL_FOUND	R		evaluation logic has detected equal condition
					0	false
					1	true
		0	MDS_ACTIVE	R		evaluation logic active
					0	false
					1	true

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Address	Register	Bit	Symbol	Access	Value	Description
0Ah	MDS_STATUS1	5	ADD_ERR	R		adjustment delay error detection
					0	ОК
					1	delay offset cannot be applied in available range
		4 to 3	MDS_EN_PHASE[1:0]	R		MDS enable phase
					00	enable phase = 0
					01	enable phase = 1 (only for $\times 2$)
					10	enable phase = 2 (only for \times 2 and \times 4)
					11	enable phase = 3 (only for \times 2)
		2	MDS_PRERUN	R		MDS-PRERUN phase active flag
					0	false
					1	true
		1	MDS_LOCKOUT	R		MDS_LOCKOUT detected flag
					0	false
					1	true
		0	MDS_LOCK	R		MDS_LOCK flag
					0	false
					1	true

Table 44. MDS status registers (address 09h to 0Ah) bit description ...continued Default values are shown highlighted.

Table 45. Interrupt control register (address 0Bh) bit description

Default	values	are	shown	hiahliahted.
		~ • •	0	

Bit	Symbol	Access	Value	Description
3	INTR_CTRL	R/W		internal interrupt and flags clearance
			0	disabled
			1	enabled
2 to 0	INTR_MON_DCLK_RANGE	R/W		Interrupt condition as related to the DCLK monitoring
			00	mon_dclk_flag when mon_dclk drifts to (1 or 5) (detect small drift)
			01	mon_dclk_flag when mon_dclk drifts to (2 or 4) (detect large drift)
			10	mon_dclk_flag when mon_dclk drifts to (3) (detect maximum drift)
			11	mon_dclk_flag disabled

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Bit	Symbol	Access	Value	Description
7	MAQB_EN	R/W		acquisition module B interrupt
			0	disabled
			1	enabled
6	MAQA_EN	R/W		acquisition module A interrupt
			0	disabled
			1	enabled
5	AUTO_DL_EN	R/W		automatic download MTP interrupt
			0	disabled
			1	enabled
4	AUTO_CAL_EN	R/W		LVDS automatic calibration interrupt
			0	disabled
			1	enabled
3	FLAG_DL_EN	R/W		MTP download error interrupt
			0	disabled
			1	enabled
2	LCLKSAMP_EN	R/W		Iclk sampling monitor error interrupt
			0	disabled
			1	enabled
1	PARBER_EN	R/W		LVDS parity or ber error interrupt
			0	disabled
			1	enabled
0	MON_DCLK_EN	R/W		dclk monitor error interrupt
			0	disabled
			1	enabled

Table 46. Interrupt enable register (address 0Ch) bit description

Table 47. INTR_FLAGS register (address 0Dh) bit description Default values are shown highlighted.

	00			
Bit	Symbol	Access	Value	Description
7	MAQB_RDY	R		acquisition module B status
			0	not ready
			1	ready
6	MAQA_RDY	R		acquisition module A status
			0	not ready
			1	ready
5	AUTO_DL_RDY	R		automatic download MTP status
			0	not ready
			1	ready
4	AUTO_CAL_RDY	R		LVDS automatic calibration status
			0	not ready
			1	ready

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Default values are shown highlighted. Bit Symbol Access Value Description 3 FLAG DL ERR R error during MTP download 0 no error 1 error detected 2 LCLKSAMP_ERR R error on Iclk sampling monitor 0 no error 1 error detected 1 PARBER ERR R error on LVDS parity or ber error 0 no error error detected 1 0 MON_DCLK_ERR R error on dclk monitor 0 no error error detected 1

Table 47. INTR_FLAGS register (address 0Dh) bit description ... continued

Table 48. Bias current control registers (address 0Eh to 15h) bit descriptionDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0Eh	DAC_CURRENT_AUX	3 to 0	DAC_AUX_BIAS[3:0]	R/W	-	bias current control
0Fh	DAC_CURRENT_0	3 to 0	DAC_DIG_BIAS[3:0]	R/W	-	(see <u>Table 49</u>)
10h	DAC_CURRENT_1	3 to 0	DAC_MST_BIAS[3:0]	R/W	-	
11h	DAC_CURRENT_2	3 to 0	DAC_DRV_BIAS[3:0]	R/W	-	
12h	DAC_CURRENT_3	3 to 0	DAC_SLV_BIAS[3:0]	R/W	-	
13h	DAC_CURRENT_4	3 to 0	DAC_CK_BIAS[3:0]	R/W	-	
14h	DAC_CURRENT_5	3 to 0	DAC_CAS_BIAS[3:0]	R/W	-	
15h	DAC_CURRENT_6	3 to 0	DAC_COM_BIAS[3:0]	R/W	-	

[1] All default values (except for register DAC_current_6) are OK for good performance over Process Voltage and Temperature.

[2] The register DAC_current_6 (address 0X15) must be set to 0X0A.

Table 49. Bias current control table	
BIAS[3:0]	Deviation from nominal current
0 0 0 0	-35 %
0 0 0 1	-30 %
0010	-25 %
0011	-20 %
0100	–15 %
0101	–10 %
0110	-5 %
0111	+0 % (default)
1000	+5 %
1001	+10 %
1010	+15 %

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 49. Bias current control table continu	led
BIAS[3:0]	Deviation from nominal current
1011	+20 %
1 1 0 0	+25 %
1 1 0 1	+30 %
1 1 1 0	+35 %
1111	+40 %

Table 50. DAC_PON_SLEEP register (address 16h) bit description Default values are shown highlighted.

Bit Symbol Access Value Description 7 DAC_B_PON R/W - DAC B power control 0 power-down 0 power-down 1 power on 1 power on 6 DAC_B_SLEEP R 0 normal operation 1 Sleep mode 1 Sleep mode 5 DAC_B_COM_PD R	
7 DAC_B_PON R/W - DAC B power control 0 power-down 1 power on 6 DAC_B_SLEEP R DAC B mode selection 0 normal operation 1 Sleep mode 5 DAC_B_COM_PD R commutator B control 0 disable (power-down)	
0 power-down 1 power on 6 DAC_B_SLEEP R DAC B mode selection 0 normal operation 1 Sleep mode 5 DAC_B_COM_PD R 0 disable (power-down)	
I power on 6 DAC_B_SLEEP R DAC B mode selection 0 normal operation 1 Sleep mode 5 DAC_B_COM_PD R 0 disable (power-down)	
6 DAC_B_SLEEP R DAC B mode selection 0 normal operation 1 Sleep mode 5 DAC_B_COM_PD R 0 disable (power-down)	
0 normal operation 1 Sleep mode 5 DAC_B_COM_PD R 0 disable (power-down)	
5 DAC_B_COM_PD R Commutator B control 0 disable (power-down)	
5 DAC_B_COM_PD R commutator B control 0 disable (power-down)	
0 disable (power-down)	
1 enable	
4 DAC_B_BLEED_PD R DAC B bleed current control	
0 disable (power-down)	
1 enable	
3 DAC_A_PON R DAC A power control	
0 power-down	
1 power on	
2 DAC_A_SLEEP R DAC B mode selection	
0 normal operation	
1 Sleep mode	
1 DAC_A_COM_PD R commutator A control	
0 disable (power-down)	
1 enable	
0 DAC_A_BLEED_PD R DAC A bleed current control	
0 disable (power-down)	
1 enable	

Table 51. DAC_TEST_8 register (address 17h) bit description Default values are shown highlighted.

	3 3			
Bit	Symbol	Access	Value	Description
2 to 0	PLL_DIG_DELAY[2:0]	R/W	-	digital clock delay offset of PLL/CKGEN_DIV8

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 52. SPI_PAGE register (address 1Fh) bit description

Default	Default values are shown highlighted.											
Bit	Symbol	Access	Value	Description								
2 to 0	PAGE[2:0]	R/W	-	SPI page address								

10.22.7 Page A register allocation map

Table 53 shows an overview of all registers on page A (0Ah in hexadecimal).

Table 53.	Page	0A I	reaister	allocation	map

she	Ade	dress	Register name	R/W	Bit definition D							Defau	ılt	
et					Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin	Hex
	0	00h	MAIN_CNTRL	R/W	-	-	-	LD_PD	PD_CNTRL	CAL_ CNTRL	RST_ DCKL	RST_ LCKL	0000 0011	03h
	1	01h	MAN_LDCLKDEL	R/W	-	LDCLK_DEL[3:0]						0000 0000	00h	
	2	02h	DBG_LVDS	R/W	-	-	-	-	SBER	F	RESERVED		0000 0000	00h
	4	04h	RST_EXT_LDCLK	R/W		RST_EXT_LCLK_TIME[7:0] 00 11								
Rev	5	5 05h RST_EXT_DCLK R/W RST_EXT_DCLK_TIME[7:0]									0010 0000	20h		
. 4 – 1	6	06h	DCMSU_PREDIV	R/W		DCMSU_PREDIVIDER[7:0] 00								
2 Dece	8	08h	LD_POL_LSB	R/W		LD_POL[7:0] (
nber 2	9	09h	LD_POL_MSB	R/W		LD_POL[15:8]						0000 0000	00h	
012	10	0Ah	LD_CNTRL	R/W	PARITYC	DESCRAMBLE	SEL	_EN[1:0]	WORD_SWAP	LDAB_ SWAP	IQ_ FORMAT	EDGE_ LDCLK	0000 0011	03h
	11	0Bh	MISC_CNTRL	R/W	SR_CDI	SR_CDI RESERVED I_LEV_ Q_LEV_CNTRL[1:0] CDI_MODE[1:0] CNTRL[1:0] CNTRL[1:0] CDI_MODE[1:0] CDI_MODE[1:0] CDI_MODE[1:0]							0000 0000	00h
	12	0Ch	I_DC_LVL_LSB	R/W		I_DC_LEVEL[7:0] 000								
	13	0Dh	I_DC_LVL_MSB	R/W		I_DC_LEVEL[15:8] 100 001								
	14	0Eh	Q_DC_LVL_LSB	R/W		Q_DC_LEVEL[7:0] 00								
© IDT 2	15	0Fh	Q_DC_LVL_MSB	R/W	I/W Q_DC_LEVEL[15:8]								1000 0000	80h
012. All right	16	10h	IO_MUX0	R/W		IO_SELECT0[7:0]								FFh
of 78														

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

DAC	Tab	le 53.	3. Page_0A register allocation map continued											
Address		dress	Register name	R/W		Bit definition								
160					Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3		Bit 1	Bit 0	Bin	Hex
	17	11h	IO_MUX1	R/W			IO_SELECT1[7:0]							FFh
	18	12h	IO_MUX2	R/W	IO_SE	ELECT1[9:8]	-		IO_SELEC	CT0[9:8]		-	1111 1111	FFh
	27	1Bh	TYPE_ID	R	DAC	FRONTEND	0[1:0]	DUAL	DSP[1:0]		BIT_RES[1:0]		0011 1010	3Ch
	28	1Ch	DAC_VERSION	R		DAC_VERSION_ID[7:0]								29h
	29	1Dh	DIG_VERSION	R		DIG_VERSION_ID[7:0]								04h
	30	1Eh	LD_VERSION	R		LVDS_VERSION_ID[7:0]								09h
	31	1Fh	PAGE_ADDRESS	R/W	-	-	-	-	-		PAGE[2:0]		0000 0000	00h

Product data sheet

 Table 53.
 Page_0A register allocation map ...continued

Integrated Device Technology

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

10.22.8 Page A bit definition detailed description

The tables in this section contain detailed descriptions of the page A registers.

Table 54. Register MAIN_CNTRL (address 00h)

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
4	LD_PD	R/W		LVDS interface power-down (control possible only when $PD_CNTRL = 1$)
			0	switched on
			1	switched off
3	PD_CNTRL	R/W		power-down modes controlled by
			0	DCMSU block
			1	SPI registers
2	CAL_CNTRL	R/W		compensation delay controlled by
			0	DCMSU block (automatic calibration)
			1	SPI registers (manual control)
1	RST_DCLK	R/W		reset DCLK
			0	disable
			1	enable
0	RST_LCLK	R/W		reset LVDS clock
			0	disable
			1	enable

Table 55. Register MAN_LDCLKDEL (address 01h)

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
3 to 0	LDCLK_DEL[3:0]	R/W -		LVDS clock compensation delay (control only if CAL_CNTRL = 1)
			-	4-bit compensation delay for LVDS clock

Table 56. Register DBG_LVDS (address 02h)

Bit	Symbol	Access	Value	Description
3	SBER	R/W		simple BER control
			0	no action
			1	simple BER active
2 to 0	RESERVED	R/W	000	reserved

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 57. Extension time reset registers (address 04h to 05h) bit description

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
04h	RST_EXT_LCLK	7 to 0	RST_EXT_LCLK_ TIME[7:0]	R/W	-	specifies extension time reset, expressed in LVDS clock periods 8 bits for the extension time reset
05h	RST_EXT_DCLK	7 to 0	RST_EXT_DCLK_ TIME[7:0]	R/W	_	specify extension time reset, expressed in DCLK periods 8 bits for the extension time reset

Table 58. Register DCSMU_PREDIV (address 06h)

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	DCMSU_PREDIVIDER[7:0]	R/W		predivider value for the DCMSU, expressed in LVDS clock period
			-	8 bits for the predivider value

Table 59. LSB/MSB of polarity registers (address 08h to 09h) bit description Default values are shown highlighted.

- class called a control and called						
Address	Register	Bit	Symbol	Access	Value	Description
08h	LD_POL_LSB	7 to 0	LD_POL[7:0]	R/W		toggles polarity of corresponding bit pair within LD[7:0]
					-	most significant 6 bits for the polarity toggle
09h	LD_POL_MSB	7 to 0	LD_POL[15:8]		-	most significant 6 bits for the polarity toggle

Table 60. Register LD_CNTRL (address 0Ah)

Bit	Symbol	Access	Value	Description
7	PARITYC	R/W		parity check
			0	disable
			1	enable
6	DESCRAMBLE	R/W		Descramble control
			0	disable descrambling
			1	enable descrambling
5 to 4	SEL_EN[1:0]	R/W		LDVS data enable
			00	LVDS data enable = align signal from channel A
			01	LVDS data enable = align signal from channel B
			10	LVDS data enable = 0
			11	LVDS data enable = 1
3	WORD_SWAP	R/W		reverse order for LVDS path
			0	normal operation
			1	MSB to LSB order reversed

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 60. Register LD_CNTRL (address 0Ah) ...continued

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description	
2	LDAB_SWAP	R/W		swaps LVDS A and LVDS B paths	
			0	normal operation	
			1	LVDS A and LVDS B paths are swapped	
1	IQ_FORMAT	R/W		specify IQ supplied format	
			0	folded	
			1	interleaved	
0	EDGE_LDCLK	R/W		specify sampling edge for LVDS data path	
			0	falling edge of LDCLK	
			1	rising edge of LDCLK	

Table 61. Register MISC_CNTRL (address 0Bh)

Bit	Symbol	Access	Value	Description
7	SR_CDI	R/W		CDI block software reset control
			0	no action
			1	perform a software reset on CDI
6	RESERVED	R/W	0	reserved
5 to 4	I_LEV_CNTRL[1:0]	R/W		specifies output from CDI for I path
			00	normal operation (CDI data output sent to digital signal processing input)
			01	if LDVS data enable = 1, then normal operation; if LDVS data enable = 0, then digital signal processing input = I_DC_LEVEL register value
			10	digital signal processing input = I_DC_LEVEL
			11	digital signal processing input = I_DC_LEVEL
3 to 2	Q_LEV_CNTRL[1:0]	R/W		specifies output from CDI for Q path
			00	normal operation (CDI data output sent to digital signal processing input)
			01	if LDVS data enable = 1, then normal operation; if LDVS data enable = 0, then digital signal processing input = Q_DC_LEVEL register value
			10	digital signal processing input = Q_DC_LEVEL
			11	digital signal processing input = Q_DC_LEVEL
1 to 0	CDI_MODE[1:0]	R/W		specifies CDI mode
			00	cdi_mode 0 (×2 mode)
			01	cdi_mode 1 (×4 mode)
			10	cdi_mode 2 (×8 mode)
			11	not used

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Default valu	Default values are shown highlighted.						
Address	Register	Bit	Symbol	Access	Value	Description	
0Ch	I_DC_LVL_LSB	7 to 0	I_DC_LEVEL[7:0]	R/W		I_DC_LEVEL	
					-	least significant 8 bits for I_DC_LEVEL	
0Dh	I_DC_LVL_MSB	7 to 0	I_DC_LEVEL[15:8]		-	most significant 8 bits for I_DC_LEVEL	
0Eh	Q_DC_LVL_LSB	7 to 0	Q_DC_LEVEL[7:0]	R/W		Q_DC_LEVEL	
					-	least significant 8 bits for Q_DC_LEVEL	
0Fh	Q_DC_LVL_MSB	7 to 0	Q_DC_LEVEL[15:8]		-	most significant 8 bits for Q DC LEVEL	

Table 62. LDS/MDS of I/Q DC levels registers (address 0Ch to 0Fh) bit description

 Table 63. Register IO_MUX0 and IO_MUX2 (address 10h and 12h)

 Default values are shown highlighted.

IO_SELECT0[9:0]	Signal on pin IO0	Description
00 0000 0000	lclk	internal LVDS Iclk clock
00 0000 0001	ringo	internal low frequency oscillator (approximately 1 MHz)
01 0000 nnnn	Ldout_A <nnnn></nnnn>	internal LVDS data bit of channel A (<nnnn> = 15 to 0; enabling the selection of the bit number to be observed)</nnnn>
10 0000 1111	AND (Ldout_B bits)	AND result of the 16 LVDS data bits of channel B
10 0001 1111	OR (Ldout_B bits)	OR result of the 16 LVDS data bits of channel B
10 0010 1111	AND (Ldout_A bits)	AND result of the 16 LVDS data bits of channel A
10 0011 1111	OR (Ldout_A bits)	OR result of the 16 LVDS data bits of channel A
11 1100 0000	INTR	active low interrupt signal
11 1100 0001	INTR	active high interrupt signal
11 1111 1110	1	set the general-purpose IO to high level
11 1111 1111	0	set the general-purpose IO to low level

DAC1617D1G0

Integrated Device Technology

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 64. Register IO_MUX1 and IO_MUX2 (address 11h and 12h)Default values are shown highlighted.

IO_SELECT1[9:0]	Signal on pin IO1	Description
00 0000 0000	dclk	internal dclk clock (f _s / 8 frequency)
01 0000 nnnn	Ldout_B <nnnn></nnnn>	internal LVDS data bit of channel B (<nnnn> = 15 to 0; enabling the selection bit number to be observed)</nnnn>
10 0000 1111	AND (Ldout_B bits)	AND result of the 16 LVDS data bits of channel B
10 0001 1111	OR (Ldout_B bits)	OR result of the 16 LVDS data bits of channel B
10 0010 1111	AND (Ldout_A bits)	AND result of the 16 LVDS data bits of channel A
10 0011 1111	OR (Ldout_A bits)	OR result of the 16 LVDS data bits of channel A
11 1100 0000	INTR	active low interrupt signal
11 1100 0001	INTR	active high interrupt signal
11 1111 1110	0	set the general-purpose IO to low level
11 1111 1111	1	set the general-purpose IO to high level

Table 65. Register TYPE_ID (address 1Bh)

Bit	Symbol	Access	Value	Description
7	DAC	R		calibration
			0	uncalibrated device
			1	calibrated device
6 to 5	FRONTEND	R	01	LVDS input interface
4	DUAL	R	0	dual DAC
3 to 2	DSP	R		internal digital signal processing
			11	interpolation filter + SSBM
			10	SSBM
			01	interpolation filter
			00	none
1 to 0	BIT_RES	R		DAC bit resolution
			00	16 bits
			01	14 bits
			10	12 bits
			11	10 bits

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 66. Register DAC_VERSION (address 1Ch)

Default values are shown highlighted.				
Bit	Symbol	Access	Value	Description
7 to 0	DAC_VERSION_ID[7:0]	R		DAC version number
			-	8 bits for the DAC version number

Table 67. Register DIG_VERSION (address 1Dh)

Default values are shown highlighted.

	0 0			
Bit	Symbol	Access	Value	Description
7 to 0	DIG_VERSION_ID[7:0]	R		digital version number
			-	8 bits for the digital version number

Table 68. Register LVDS_VERSION (address 1Eh)

Default values are shown highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	LVDS_VERSION_ID[7:0]	R		LVDS receiver version number
			-	8 bits for the LVDS receiver version number

Table 69. Register PAGE_ADD (address 1Fh)

Bit	Symbol	Access	Value	Description
2 to 0	PAGE[2:0]	R/W		Page address
			-	current page address

Integrated Device Technology

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

11. Package outline

Fig 36. Package outline SOT813-3 (HVQFN72)

DAC1617D1G0 Product data sheet
Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

12. Abbreviations

Table 70.	Abbreviations
Acronym	Description
BW	BandWidth
BWA	Broadband Wireless Access
CDI	Clock Domain Interface
CDMA	Code Division Multiple Access
CML	Current Mode Logic
CMOS	Complementary Metal Oxide Semiconductor
DAC	Digital-to-Analog Converter
EDGE	Enhanced Data rates for GSM Evolution
FIR	Finite Impulse Response
GSM	Global System for Mobile communications
IF	Intermediate Frequency
IMD3	Third Order InterModulation
LMDS	Local Multipoint Distribution Service
LO	Local Oscillator
LVDS	Low-Voltage Differential Signaling
NCO	Numerically Controlled Oscillator
NMOS	Negative Metal-Oxide Semiconductor
PLL	Phase-Locked Loop
SFDR	Spurious-Free Dynamic Range
SPI	Serial Peripheral Interface
WCDMA	Wide band Code Division Multiple Access
WLL	Wireless Local Loop

13. Glossary

13.1 Static parameters

INL — The deviation of the transfer function from a best fit straight line (linear regression computation).

DNL — The difference between the ideal and the measured output value between successive DAC codes.

13.2 Dynamic parameters

Spurious-Free Dynamic Range (SFDR) — The ratio between the RMS value of the reconstructed output sine wave and the RMS value of the largest spurious observed (harmonic and non-harmonic, excluding DC component) in the frequency domain.

Decibels relative to full scale (dBFS) — Unit used in a digital system to measure the amplitude level in decibel relative to the maximum peak value.

InterModulation Distortion (IMD) — From a dual-tone digital input sine wave (these two frequencies being close together), the intermodulation distortion products IMD2 and IMD3 (second order and third order components) are defined below.

IMD2 — The ratio between the RMS value of either tone and the RMS value of the worst second order Intermodulation product.

IMD3 — The ratio between the RMS value of either tone and the RMS value of the worst third order Intermodulation product.

Total Harmonic Distortion (THD) — The ratio between the RMS value of the harmonics of the output frequency and the RMS value of the output sine wave. Usually, the calculation of THD is done on the first 5 harmonics.

Signal-to-Noise Ratio (SNR) — The ratio between the RMS value of the reconstructed output sine wave and the RMS value of the noise excluding the harmonics and the DC component.

Restricted BandWidth Spurious-Free Dynamic Range (SFDR_{RBW}) — The ratio between the RMS value of the reconstructed output sine wave and the RMS value of the noise, including the harmonics, in a given bandwidth centered around f_{offset}.

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

14. Revision history

able 71. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
DAC1617D1G0 v.4	20120720	Product data sheet	-	DAC1716D1G0 v.3
DAC1617D1G0 v.3	20120702	Rebranded/updated	-	DAC1617D1G0 v.2
DAC1617D1G0 v.2	20120630	Preliminary data sheet	-	DAC1617D1G0 v.1.1
DAC1617D1G0 v.1.1	20110930	Objective data sheet	-	DAC1617D1G0 v.1
DAC1617D1G0 v.1	20110906	Objective data sheet	-	-

Contact information

6024 Silver Creek Valley Road San Jose, California 95138

Integrated Device Technology

DAC1617D1G0

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

15. Tables

Table 4	
Table I.	Ordering information
Table 2.	Pin description4
Table 3.	Limiting values
Table 4.	Thermal characteristics7
Table 5.	Characteristics
Table 6.	Read or Write mode access description
Table 7	Number of bytes transferred 15
Table 9	SPI timing obstactoristics
Table 9.	
Table 10.	Folded and interleaved format mapping19
Table 11.	CDI mode 0: operating modes examples24
Table 12.	CDI mode 1: operating modes examples25
Table 13.	CDI mode 2: operating modes examples25
Table 14:	Interpolation filter coefficients
Table 15	Complex modulator operation mode 30
Table 16	Inversion filter coefficients 30
Table 17	DAC trapefor function
	Disitel effect edivergent
Table 19.	Auxiliary DAC transfer function
Table 20.	SPI start-up sequence
Table 21.	Page_00 register allocation map47
Table 22.	Register COMMON (address 00h)
	bit description
Table 23.	Register TXCFG (address 01h)
	bit description
Table 24.	Register PLLCEG (address 02h)
	bit description 50
Table 25	NCO frequency registers (address 0.4b to 0.8b)
	hit description
Table 26.	DAC output phase correction registers
	(address 09h to 0Ah) bit description51
Table 27.	Digital gain control registers (address 0Bh to 0Eh)
	bit description
Table 28.	Register DAC_OUT_CTRL (address 0Fh)51
Table 29.	Register DAC_CLIPPING (address 10h)52
Table 30.	Digital offset value registers (address 11h to 14h)
	bit description
Table 31.	NCO phase offset registers (address 15h to 16h)
	bit description 52
Table 32	Analog gain control registers (address 17h to 1Ah)
	hit deparintion
	Auxiliary DAC registers (address 1Db to 1Db)
Table 33.	Auxiliary DAC registers (address TBn to TEn)
	bit description
Table 34.	SPI_PAGE register (address 1Fh)
	bit description
Table 35.	Page 1 register allocation map54
Table 36.	MDS_MAIN register (address 00h)
	bit description

Table 37.	MDS window time registers (address 01h to 02h)
Table 38.	MDS MISCCNTRL0 register (address 03h)
	bit description
Table 39.	MDS_MAN_ADJUSTDLY register (address 04h) bit description 57
Table 40.	MDS_AUTO_CYCLES register (address 05h)
Table 11	bit description
	bit description
Table 42.	MDS_OFFSET_DLY register (address 07h)
Table 13	bit description
	bit description
Table 44.	MDS status registers (address 09h to 0Ah)
Table 45	bit description
14510 10.	bit description
Table 46.	Interrupt enable register (address 0Ch)
Table 47.	INTR FLAGS register (address 0Dh)
	bit description
Table 48.	Bias current control registers (address 0Eh to 15h)
Table 49.	Bias current control table
Table 50.	DAC_PON_SLEEP register (address 16h)
Table 51.	DAC TEST 8 register (address 17h)
	bit description
Table 52.	SPI_PAGE register (address 1Fh)
Table 53.	Page 0A register allocation map
Table 54.	Register MAIN_CNTRL (address 00h)66
Table 55.	Register MAN_LDCLKDEL (address 01h) 66
Table 56.	Register DBG_LVDS (address 02h)66
Table 57.	Extension time reset registers
	(address 04h to 05h) bit description67
Table 58.	Register DCSMU_PREDIV (address 06h) 67
Table 59.	LSB/MSB of polarity registers
	(address 08h to 09h) bit description67
Table 60.	Register LD_CNTRL (address 0Ah)67
Table 61.	Register MISC_CNTRL (address 0Bh) 68
Table 62.	LDS/MDS of I/Q DC levels registers
Table 00	(address UCh to UFh) bit description 69
Table 63.	Register IU_MUXU and IU_MUX2
Table 04	(address 10n and 12n)
iadie 64.	Register IU_MUX I and IU_MUX2
	$(auuress i m ano 12m) \dots 12m$

continued >>

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Table 65.	Register TYPE_ID (address 1Bh)70
Table 66.	Register DAC_VERSION (address 1Ch)71
Table 67.	Register DIG_VERSION (address 1Dh)71
Table 68.	Register LVDS_VERSION (address 1Eh)71
Table 69.	Register PAGE_ADD (address 1Fh)71
Table 70.	Abbreviations
Table 71.	Revision history75

Integrated Device Technology

DAC1617D1G0

16. Contents

1	General description 1	10.	12	Ir
2	Features and benefits 2	10.	13	Ν
3	Applications 2	10.	13.1	N
4	Ordering information	10.	13.1.1	1 N
5	Block diagram 3	10.	13.1.2	2 10
6	Dipping information	10.	13.2	
61	Pinning Mormation	10.	14 15	
62	Pin description 4	10.	15 1	R
7	Limiting values	10.	15.2	F
<i>'</i>	Thermal above stavistics	10.	16	Ĺ
8		10.	17	D
9	Characteristics 8	10.	18	Α
10	Application information 14	10.	19	Α
10.1	General description 14	10.	20	С
10.2	Serial Peripheral Interface (SPI) 14	10.	20.1	В
10.2.1	Protocol description 14	10.	20.2	L
10.2.2	SPI timing description			ir
10.3	Power-on sequence	10.	20.3	IC
10.4	LVDS Data Input Format (DIF) block 17	10.	20.4	
10.4.1	Input port polarity	10.	21	D
10.4.2	Input port mapping	10.	21.1	P
10.4.0	Input port formatting	10.	22 22 1	
10.4.5	Data parity/data enable	10.	22.1 22.2	
10.5	Interrupt controller	10.	22.2 22 3	P
10.6	General-purpose IO pins 20	10.	22.0	P
10.7	Input clock	10.	22.5	P
10.7.1	LVDS DDR clock	10.	22.6	P
10.7.2	DAC core clock 21	10.	22.7	Ρ
10.8	Timing 22	10.	22.8	Ρ
10.9	Operating modes 23	11		Pac
10.9.1	CDI mode 0 (x2 interpolation)	12		Abl
10.9.2	CDI mode 1 (x4 interpolation)	13	i	Glo
10.9.3	CDI mode 2 (x8 interpolation)	13	1	S S
10.10	FIR IIIIers	13	2	D
10.11		1/	-	Rov
10.11.1	NCO Inv power 29	14		Tel
10.11.3	Complex modulator 29	61		
10.11.4	Minus 3dB	16		

0.12 0.13 0.13.1 0.13.1	Inverse (sin x) / x Multiple Devices Synchronization (MDS) MDS concept 1 MDS in All slaves mode	30 31 31 33
0.13.1.	2 MDS in Master/slaves mode	34
0.13.2		25
0.14		36
0.151	Regulation	36
0 15 2	Full-scale current adjustment	36
0.16	l imiter/clip control	37
0.17	Digital offset adjustment.	37
0.18	Analog output	37
0.19	Auxiliary DACs	38
0.20	Output configuration.	39
0.20.1	Basic output configuration	40
0.20.2	Low input impedance IQ-modulator	
	interface	41
0.20.3	IQ-modulator - DC interface	41
0.20.4	IQ-modulator - AC interface	44
0.21		44
0.21.1	Power and grounding	44
0.22		45
0.22.1		45
0.22.2	SPI start-up sequence	45
0.22.3	Page 0 register allocation map	47
0.22.4	Page 1 allocation man	49
0.22.5	Page 1 bit definition detailed description	56
0.22.0	Page A register allocation map	64
0.22.8	Page A bit definition detailed description	66
1	Package outline	72
ว	Abbreviations	73
2	Glosson	73
3	Ctotic peremeters	74
3.1	Dynamic parameters	74
J.Z		74
4 -		70
5	Iables	/6
6	Contents	78

Dual 16-bit DAC: up to 1 Gsps; x2, x4 and x8 interpolating

Disclaimer

Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright, 2012. All rights reserved.