# **inter<sub>sil</sub>**

# **ZL6105-1CH-DEMO1Z Demonstration Board User Guide**

# Introduction

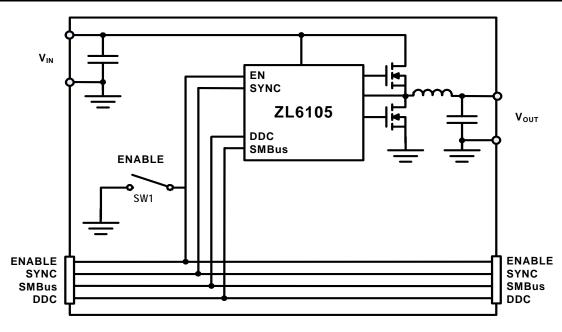
The ZL6105 is an innovative power conversion and management IC that combines integrated MOSFET drivers with key power and fault management functions in a small package, resulting in a flexible and integrated solution. The ZL6105-1CH-DEMO1Z platform allows quick evaluation of the highly configurable ZL6105's performance and features in either stand-alone mode or via the SMBus<sup>™</sup> interface using Intersil's PowerNavigator<sup>™</sup> GUI software.

# **Specifications**

This board has been configured and optimized for the following range of operating conditions:

- V<sub>IN</sub> = 5.5V to 14V
- V<sub>OUT</sub> = 0.6V to 3.6V
- I<sub>MAX</sub> = 40A
- f<sub>SW</sub> = 300kHz to 1333kHz
- Peak efficiency: >90% at 50% load
- Output ripple: <1% at 50% load

### **Key Features**


- · Optimized for small circuit footprint
- Onboard enable switch
- Power-good indicator
- SMBus control interface
- · Interconnectivity with other Intersil demo boards

### References

- ZL6105, Datasheet
- <u>AN2010</u>, "Thermal and Layout Guidelines for Digital-DC™ Products"
- AN2035, "Compensation Using CompZL™"
- <u>AN1779</u>, "Configuring Current Sharing on the ZL6105 and ZL8101"
- TB389, "PCB Land Pattern and Surface Mount Guidelines for QFN Packages"

## **Ordering Information**

| PART NUMBER       | DESCRIPTION                                                                 |
|-------------------|-----------------------------------------------------------------------------|
| ZL6105-1CH-DEM01Z | ZL6105 Evaluation Kit, one<br>channel (EVB, USB adapter,<br>Cable, Software |





### ZL6105-1CH-DEM01Z BOARD

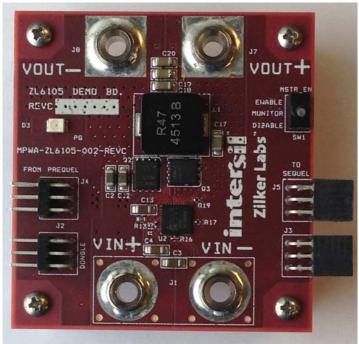



FIGURE 2. TOP SIDE



FIGURE 3. BOTTOM SIDE

# **Functional Description**

The ZL6105-1CH-DEM01Z provides all of the circuitry required to demonstrate features of the ZL6105. The ZL6105-1CH-DEM01Z has a functionally optimized layout that allows efficient operation up to the maximum output current. Power and load connections are provided through plug-in sockets. Standalone operation is achieved using a combination of pin-strap settings and stored settings. The pin-strap setting details are described in the ZL6105 datasheet. The stored settings are listed on <u>"Default Configuration Settings" on page 14</u>.

The ZL6105-1CH-DEMO1Z Demonstration Board schematics are shown in Figures 4 and 5. The hardware enable function is controlled by a toggle switch. The Power-Good (PG) LED indicates that  $V_{OUT}$  is regulating. The right angle headers at opposite ends of the board are for connecting a USB to SMBus control board or for daisy chaining of multiple Intersil evaluation boards.

Connecting multiple Intersil Digital boards allows the user to setup many shared features such as clock synchronization, controlled sequencing, phase spreading and fault spreading within Intersil's PowerNavigator™ software as part of a single power project. This document provides operational instructions, schematics, bill of materials and PCB layers with layout notes for reference. Figures 14 through 19 show performance data taken using this hardware in its optimized configuration. The configuration settings that the hardware ships with are shown on page 14.

# **Operating Range**

By default, the ZL6105-1CH-DEMO1Z is configured to provide 1V at up to 40A at 400kHz  $f_{SW}$ . The board can also support a wider operating range and modifying the operating conditions will change the performance results.

The board V<sub>IN</sub> range is 4.5V to 14V. The board V<sub>OUT</sub> setting is fixed at 1V by PMBus setting, but the range is programmable from 0.54V to 3.6V (including margin high/low) using the VOUT\_COMMAND PMBus command. The maximum value of 3.6V is limited by pin strap. The board I<sub>OUT</sub> range is 0 to 40A. For continuous operation at 40A, airflow across the board may be needed.

The switching frequency ( $f_{SW}$ ) is set to 400kHz by PMBus command, but the  $f_{SW}$  setting can be changed by using the FREQUENCY\_SWITCH PMBus command (while the device is disabled). The  $f_{SW}$  range is 300kHz to 1.33MHz.

### **Quick Start Guide**

### **Stand Alone Operation**

- **1**. Ensure that the board is properly connected to the supply and loads before applying any power.
- 2. Set Enable switch to "DISABLE".
- 3. Apply Load to  $V_{OUT+}/V_{OUT-}$
- 4. Connect the USB adapter cable to the host computer.
- 5. Connect the USB to SMBus adapter to J2 (Required to provide external power for enable switch).
- 6. Connect the input power supply to  $V_{\text{IN+}}/V_{\text{IN-}}$
- 7. Turn input supply on.
- 8. Set Enable switch to "ENABLE".
- 9. Test ZL6105 operation.

### **USB (PMBus) Operation**

- 1. Follow steps 1 through 7 of Stand Alone Operation.
- 2. Download PowerNavigator software from the Intersil website and install.
- 3. Use the GUI to operate at  $V_{\mbox{OUT}}$  up to 3.6V.
- 4. Set the Enable switch to "ENABLE".
- 5. Monitor and configure the ZL6105 using the PowerNavigator software.

### ZL6105-1CH-DEMO1Z Schematics

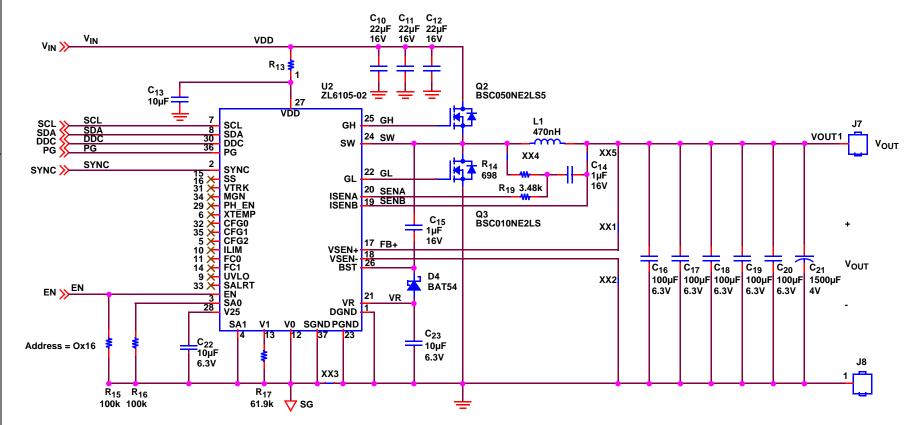



FIGURE 4. ZL6105-1CH-DEM01Z DEM0 BOARD

### ZL6105-1CH-DEMO1Z Schematics (Continued)

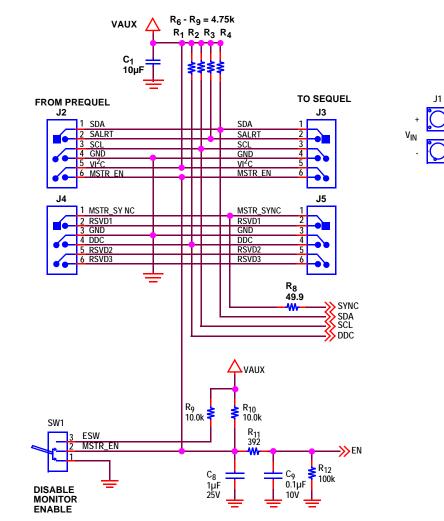



FIGURE 5. ZL6105-1CH-DEM01Z INTERFACE

V<sub>IN</sub> ≪-

C<sub>5</sub> 330µF 16V

C<sub>2</sub> C<sub>3</sub> 22µF 22µF 16V 16V V<sub>IN</sub>

-

╧

C<sub>4</sub> 10μF 25V **«**PG

D3

R<sub>18</sub> 1.5k

### **Bill of Materials**

| QTY      | REFERENCE                     | VALUE           | TOL<br>(%) | RATING | TYPE        | PCB FOOTPRINT                | MANUFACTURER         | PART NUMBER          |
|----------|-------------------------------|-----------------|------------|--------|-------------|------------------------------|----------------------|----------------------|
| 1        | U2                            | ZL6105          |            |        |             | MLF36_6X6BX                  | Intersil Corporation |                      |
| 2        | C2, C3                        | 22µF            | 20         | 16V    | X5R         | SM1206                       | Murata               | GRM31CR61C226ME15L   |
| 1        | C4                            | 10µF            | 10         | 25V    | X5R         | SM1206                       | Panasonic - ECG      | ECJ-3YB1E106K        |
| 1        | C5                            | 330µ            | 20         | 16V    | AL POLY     | SM_CAP_10.5X10.5_PX<br>A_FLD | United Chemi-Con     | APXA160ARA331MJCOG   |
| 1        | C8                            | 1μF             | 10         | 25V    | X5R         | SM0603                       | Taiyo Yuden          | TMK107BJ105KA-T      |
| 1        | C9                            | 0.1µF           | 10         | 10V    | X7R         | SM0603                       | Kemet                | C0603C104K8RACTU     |
| 3        | C10, C11,<br>C12              | 22µF            | 20         | 16V    | X5R         | SM1206                       | Panasonic - ECG      | ECJ-3YB1C226M        |
| 1        | C13                           | 10µF            | 10         | 25V    | X7R         | SM1206                       | Taiyo Yuden          | TMK316B7106KL-TD     |
| 2        | C14, C15                      | 1μF             | 10         | 16V    | X7R         | SM0603                       | AVX Corporation      | 0603YC105KAT2A       |
| 5        | C16, C17,<br>C18, C19,<br>C20 | 100µF           | 20         | 6.3V   | X5R         | SM1206                       | TDK Corporation      | C3216X5R0J107M       |
| 1        | C21                           | 1500µF          | 20         | 4V     | AL POLY     | SM7343_KEMET_T530_<br>BC     | AVX                  | TPME158K004R0018     |
| 2        | C22, C23                      | 10µF            | 10         | 6.3V   | X7R         | SM0805                       | TDK Corporation      | CGA4J1X7R0J106K125A0 |
| 1        | D4                            | BAT54           |            | 30V    | Schottky    | SOD_523                      | ON Semiconductor     | BAT54XV2T10S         |
| 1        | L1                            | 470nH           |            | 0.8mΩ  | Inductor    | IND_HCM1305_XX               | Cooper Bussmann      | HCM1305-R47-R        |
| 1        | Q2                            | BSC050NE2LS5    |            | 30V    |             | PG_TDSON_8_LAS               | Infineon             |                      |
| 1        | Q3                            | BSC010NE2LS     |            | 30V    |             | PG_TDSON_8_LAS               | Infineon             |                      |
| 4        | R1, R2, R3,<br>R4             | 4.75k           | 1          |        | 1/16W       | SM0402                       | Panasonic - ECG      | ERJ-2RKF4751X        |
| 1        | R13                           | 1               | 1          |        | 1/16W       | SM0603                       | Panasonic - ECG      | ERJ-3RQF1R0V         |
| 1        | R14                           | 953             | 1          |        | 1/16W       | SM0603                       | Panasonic            | ERJ-3EKF9530V        |
| 2        | R15, R16                      | 100k            | 1          |        | 1/16W       | SM0402                       | Vishay/Dale          | CRCW0402100KFKED     |
| 1        | R17                           | 133k            | 1          |        | 1/16W       | SM0402                       | Panasonic - ECG      | ERJ-2RKF1333X        |
| 1        | R19                           | 3.48k           | 1          |        | 1/16W       | SM0402                       | Panasonic - ECG      | ERJ-2RKF3481X        |
| ANCILLAR | Y PARTS SPECI                 | FIC TO DEMO BOA | RD OPERA   | TION   |             | 1                            | I                    |                      |
| 1        | C1                            | 10µF            | 10         | 10V    | X7R         | SM0805                       | Taiyo Yuden          | LMK212B7106KG-TD     |
| 1        | D3                            | GRN             |            | 1.8V   |             | DIO_LG_T67K                  | Osram                | LG T67K-H2K1-24-Z    |
| 2        | J2, J4                        | HDR_3x2_RA      |            |        | RA          | HDRM3DUALRA100X10<br>0       | SAMTEC               | TSW-103-08-T-D-RA    |
| 2        | J3, J5                        | SKT_3x2_RA      |            |        | RA          | HDRF3DUALRA100X100           | SAMTEC               | SSQ-103-02-T-D-RA    |
| 1        | R8                            | 49.9            | 1          | 100mW  | THK<br>FILM | SM0402                       | PANASONIC-ECG        | ERJ-2RKF49R9X        |
| 2        | R9, R10                       | 10.0k           | 1          | 63mW   | THK<br>FILM | SM0402                       | Panasonic - ECG      | ERJ-2RKF1002X        |
| 1        | R11                           | 392             | 1          | 100mW  | THK<br>FILM | SM0402                       | Panasonic            | ERJ-2RKF3920X        |
| 1        | R12                           | 100k            | 1          | 63mW   | THK<br>FILM | SM0402                       | Panasonic - ECG      | ERJ-2RKF1003X        |
| 1        | R18                           | 1.5K            | 1          | 63mW   | THK<br>FILM | SM0603                       | Panasonic - ECG      | ERJ-3EKF1501V        |
| 1        | SW1                           | SW_SPDT         |            |        | PCB<br>VERT | SW_TOG_ULTRAMIN_SP<br>DT     | NKK                  | G13AP-RO             |

# Bill of Materials (Continued)

| QTY | REFERENCE           | VALUE                   | TOL<br>(%) | RATING | TYPE | PCB FOOTPRINT       | MANUFACTURER            | PART NUMBER |
|-----|---------------------|-------------------------|------------|--------|------|---------------------|-------------------------|-------------|
| 4   | J1A, J1B, J7,<br>J8 | JACK_BANANA             |            |        |      | JACK_KEYSTONE_575-4 | Keystone<br>Electronics | 575-4       |
| 4   |                     | STANDOFF_#4-<br>40.75LG |            |        |      | STANDOFF_4-40_NDH   |                         |             |
| 4   |                     | SCREW_#4-<br>40.25"     |            |        |      | SCREW_4-40          |                         |             |

**Measured Data** The following data was obtained using a ZL6105-1CH-DEM01Z evaluation board. VIN = 12V for all data.

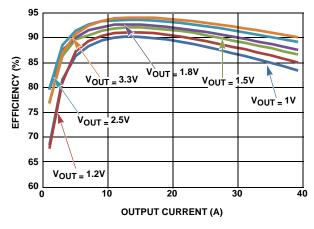



FIGURE 6. EFFICIENCY DATA AT 300kHz

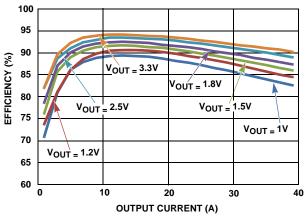



FIGURE 7. EFFICIENCY DATA AT 400kHz

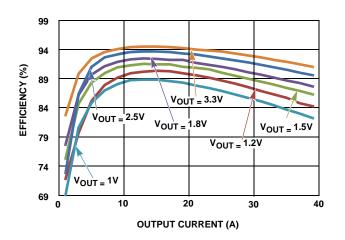



FIGURE 8. EFFICIENCY DATA AT 500kHz

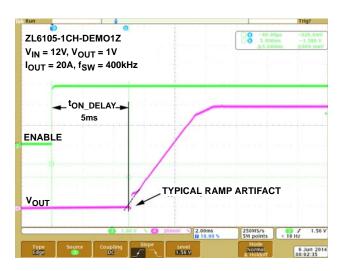
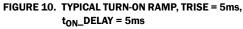





FIGURE 9. EFFICIENCY DATA AT 600kHz

**Measured Data** The following data was obtained using a ZL6105-1CH-DEM01Z evaluation board. V<sub>IN</sub> = 12V for all data. (Continued)





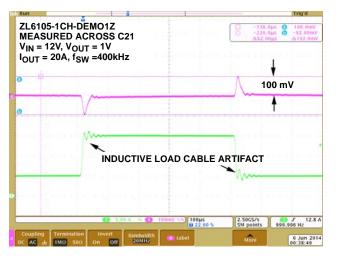



FIGURE 12. TRANSIENT RESPONSE 5 TO 15A,  $5A/\mu$ 

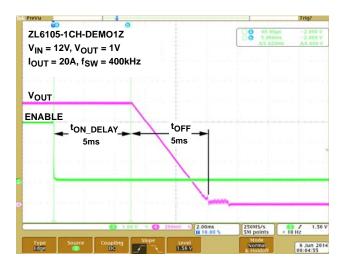



FIGURE 11. TYPICAL TURN-OFF RAMP, t<sub>FALL</sub> = 5ms, toFF\_DELAY = 5ms

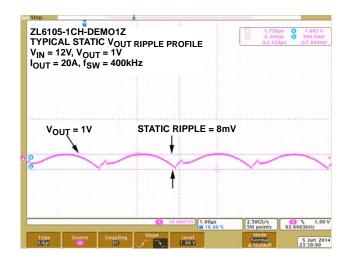



FIGURE 13. STATIC RIPPLE

# **ZL6105 PCB Layout Guidelines**

### **Device Ground Pins**

- SGND is the analog reference for VDD, VR, V25, XTEMP and the pin straps. Very little current passes through this path normally.
- DGND is the high current digital GND return path for the controller. It is isolated internally from SGND to avoid noise coupling.
- PGND is the high current GND return for the MOSFET drivers and the bootstrap circuit. It is isolated internally from SGND to avoid noise coupling.

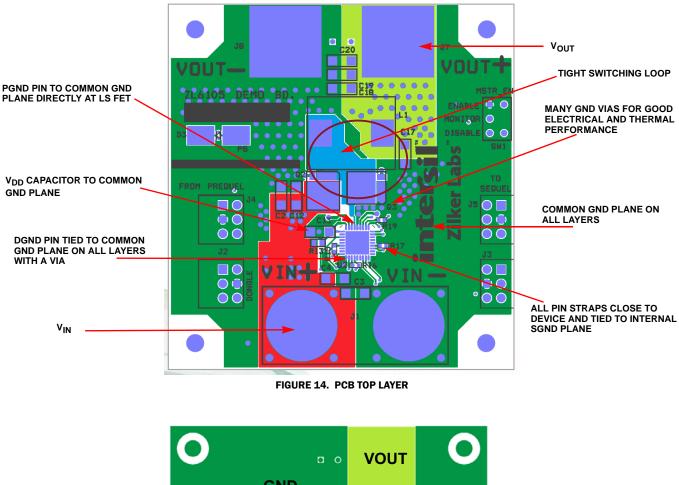
### **Ground Pin Usage**

- The pins are isolated within the device only to avoid noise coupling through the package and bond wires. They should be tied together on the PCB with a very low impedance connection for best operation. If the DGND pin is not closely coupled to SGND, the SGND pin will become a current path for digital circuits and will get noisy.

### **Device Power Supply Pins**

- VDD is the input supply pin. It provides power to the internal VR regulator.
- VR is the internal 5V regulator used to power the MOSFET drivers and the V25 regulator.
- V25 is the internal 2.5V regulator used to power the digital circuits.

### **Power Supply Pin Usage**


- VDD, VR and V25 are all referenced to SGND and all need to have capacitors placed closely to the pins.

# ZL6105 Voltage, Current and Temperature Sense Connections

- Ensure that the current sense signals are routed differentially and that the averaging circuit is Kelvin connected to the sensing element for most accurate current sense.
- Ensure that the voltage sense signals are routed differentially and are Kelvin connected to the final capacitor away from the inductor for best noise performance.
- Ensure that the XTEMP and SGND traces are routed differentially to the temperature sensing transistor.

### **User Guide 014**

### ZL6105-1CH-DEMO1Z Board Layout - 6 Layers



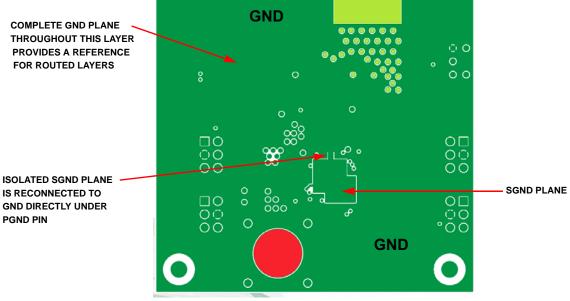



FIGURE 15. INNER LAYER 1

### **User Guide 014**

## ZL6105-1CH-DEM01Z Board Layout - 6 Layers

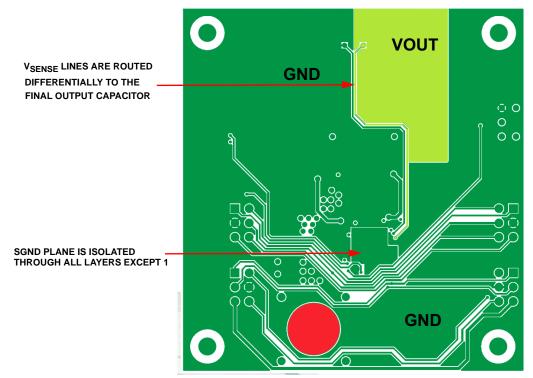



FIGURE 16. INNER LAYER 2

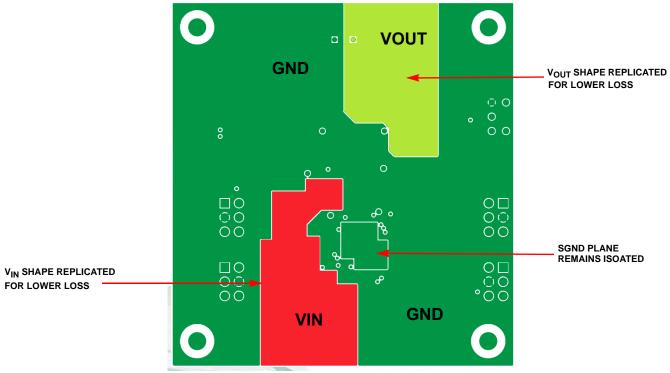



FIGURE 17. INNER LAYER 3

### **User Guide 014**

### ZL6105-1CH-DEMO1Z Board Layout - 6 Layers

**REPLICATION OF INNER LAYER 3** 

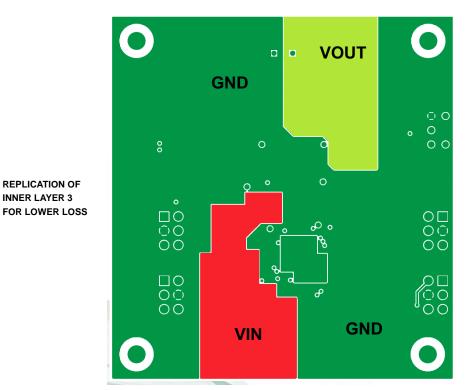



FIGURE 18. INNER LAYER 4

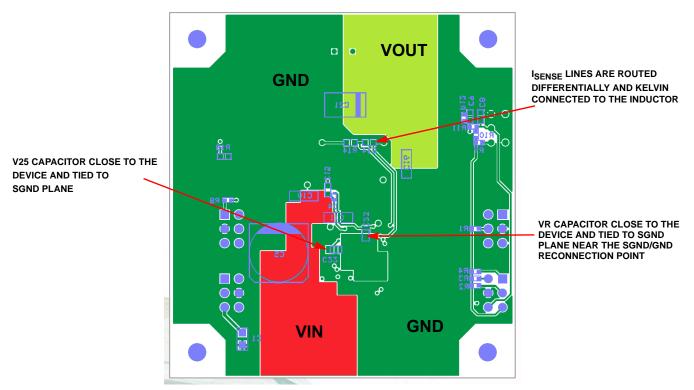



FIGURE 19. BOTTOM LAYER

### **Default Configuration Settings**

The following configuration file is loaded into the ZL6105 on the ZL6105-1CH-DEM01Z in the Default Store. The # symbol is used to denote comments. Anything following the # symbol is ignored.

| PMBus COMMAND           | VALUE             | NOTES                      |
|-------------------------|-------------------|----------------------------|
| ON_OFF_CONFIG           | 0x17              | #Pin Enable, immediate off |
| MFR_ID                  | Intersil          |                            |
| MFR_MODEL               | ZL6105-1CH-DEM01Z |                            |
| MFR_LOCATION            | Austin, TX        |                            |
| MFR_REVISION            | Rev 1.0           |                            |
| VOUT_COMMAND            | 1                 | #V                         |
| VOUT_UV_FAULT_RESPONSE  | 0x80              | #Immediate shutdown        |
| OVUV_CONFIG             | 0x00              | #Disabled                  |
| IOUT_CAL_GAIN           | 0.84              | #mΩ                        |
| IOUT_OC_FAULT_LIMIT     | 50                | #A                         |
| IOUT_AVG_OC_FAULT_LIMIT | 50                | #A                         |
| IOUT_UC_FAULT_LIMIT     | -30               | #A                         |
| IOUT_AVG_UC_FAULT_LIMIT | -30               | #A                         |
| FREQUENCY_SWITCH        | 400               | #kHz                       |
| DEADTIME                | 0x2020            | #32ns                      |
| DEADTIME_CONFIG         | 0x0606            | #2ns Min, Dynamic          |
| DEADTIME_MAX            | 0x2020            | #32,56ns Max               |
| INDUCTOR                | 0.47              | #µH                        |
| MFR_CONFIG              | 0x8412            |                            |
| USER_CONFIG             | 0x0011            |                            |
| TEMPCO_CONFIG           | 0x28              |                            |
| MISC_CONFIG             | 0x2000            |                            |
| AUTO_COMP_CONFIG        | 0x79              | #Enabled, 80% Gain         |
| STORE_DEFAULT_ALL       |                   |                            |
| RESTORE_DEFAULT_ALL     |                   |                            |
| RESTORE_USER_ALL        |                   |                            |

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com