QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 821

DESCRIPTION

Demonstration circuit 821 is a precision dual RF power detector featuring the LTC ${ }^{\circledR} 5533$.
The LTC5533 is a dual channel RF power detector for RF applications operating in the 300 MHz to 11 GHz range. Two independent temperature compensated Schottky diode peak detectors and buffer amplifiers are combined in a small $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN package.

The RF input voltage is peak detected using on-chip Schottky diodes. The detected voltage is buffered and supplied to the $\mathrm{V}_{\text {OUT }}$ pins. A power saving shut-
down mode reduces current to less than $2 \mu \mathrm{~A} /$ channel. The initial output starting voltages of $130 \mathrm{mV} \pm 35 \mathrm{mV}$ can be precisely adjusted using the $V_{0 S}$ pins.
The LTC5533 operates with input power levels from -32dBm to 12dBm.
Design files for this circuit board are available. Call the LTC factory.

LTC is a trademark of Linear Technology Corporation

Table 1. Typical Performance Summary ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \overline{\mathrm{SHDN}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, source impedance $=50 \Omega$, unless otherwise noted. Test circuit shown in Figure 2.)

PARAMETER	CONDITION	VALUE
$\mathrm{V}_{\text {CC }}$ Operating Voltage		2.7 V to 6V
IVCC Operating Current, per channel	$\mathrm{I}_{\text {VOUT }}=0 \mathrm{~mA}$	0.45 mA
$I_{\text {VCC }}$ Shutdown Current, per channel	$\overline{\text { SHDN }}=$ LO	$0.01 \mu \mathrm{~A}$
$\overline{\text { SHDN }}$ Voltage, Chip Disabled	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 6V	0.35 V max
$\overline{\text { SHDN }}$ Voltage, Chip Enabled	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 6 V	1.4 V min
$\overline{\text { SHDN }}$ Input Current, per channel	$\overline{\text { SHDN }}=3.6 \mathrm{~V}$	$22 \mu \mathrm{~A}$
RFIN Input Frequency Range		300 MHz to 11 GHz
RFIN Input Power Range	RF Frequency $=300 \mathrm{MHz}$ to $7 \mathrm{GHz}, \mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 6V	-32dBm to 12dBm
Channel to Channel Isolation	$\mathrm{f}=2 \mathrm{GHz}$	45 dB
$V_{\text {OS }}$ Voltage Range		OV to 1V
$\mathrm{V}_{\text {OS }}$ Input Current	$\mathrm{V}_{0 S}=1 \mathrm{~V}$	$-0.5 \mu \mathrm{~A}$ to $0.5 \mu \mathrm{~A}$
V OUT Start Voltage (No RF Input)	$\begin{aligned} & R_{\mathrm{LOAD}}=2 \mathrm{k} \Omega, \mathrm{~V}_{O S}=0 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=\mathrm{LO} \end{aligned}$	110 mV to 150 mV 1 mV
$\mathrm{V}_{\text {OUT }}$ Output Current	$\mathrm{V}_{\text {OUT }}=1.75 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=2.7 \mathrm{~V}, \Delta \mathrm{~V}_{\text {OUT }}<10 \mathrm{mV}$	4 mA
Vout Load Capacitance		33pF max
$\mathrm{V}_{\text {OUT }}$ Bandwidth	$C_{L O A D}=33 p F, R_{\text {LOAD }}=2 \mathrm{k} \Omega$	2MHz
VOUT Slew Rate	$\mathrm{V}_{\text {RFIN }}=1 \mathrm{~V}$ Step, $\mathrm{C}_{\text {LOAD }}=33 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=2 \mathrm{k} \Omega$	$3 \mathrm{~V} / \mu \mathrm{s}$
Vout Noise	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$, Noise $\mathrm{BW}=1.5 \mathrm{MHz}, 50 \Omega$ RF Input Termination	1 mV P-P
$\mathrm{V}_{\text {OUT }}$ Enable Time	$\overline{\text { SHDN }}=\mathrm{LO}$ to HI, C $\mathrm{C}_{\text {LOAD }}=33 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=2 \mathrm{k}$	8 s

PUICK START PROCEDURE

Demonstration circuit 821 is easy to set up to evaluate the performance of the LTC5533. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Connect all DC power supplies' negative (-) outputs to demo board Gnd test points (E5 and E10).
2. Connect $\mathrm{V}_{C C}$ DC power supplies' positive (+) outputs (2.7V to 6 V) to demo board $\mathrm{V}_{\text {CC }}$ test points (E1 and E6).

NOTE: Do not exceed 6.5V, the absolute maximum supply voltage.
3. Connect $\mathrm{V}_{0 S} \mathrm{DC}$ power supplies' positive (+) outputs (0V to 1 V) to demo board $\mathrm{V}_{0 \text { s }}$ test points (E3 and E9).
4. Connect voltmeters' negative (-) leads to demo board Gnd test points (E5 and E10).
5. Connect voltmeters' positive (+) leads to the demo board Vout test points (E2 and E7).
6. Connect RF signal generators' outputs to demo board RF in ports (SMA connectors J1 and J2) via coaxial cables.
7. Using jumper cables, connect demo board $V_{C C}$ test points (E1 and E6) to $\overline{\text { SHDN }}$ test points (E4 and E8). Now both the detectors are enabled (on) and are ready for measurement.

NOTE: Make sure that the power is not applied to the $\overline{\text { SHDN }}$ test points before it is applied to the $V_{C C}$ test points. The voltages on the $\overline{\text { SHDN }}$ test points must never exceed V_{cc}.
8. Apply RF input signals and measure Vout DC voltages.

NOTE: Do not exceed +12 dBm , the absolute maximum RF input power.

Figure 1. Proper Measurement Equipment Setup

