

DEMO MANUAL DC2417A

LTC4367 100V Overvoltage, Undervoltage and Reverse Supply Protection Controller

DESCRIPTION

Demonstration circuit 2417A is intended to demonstrate the performance of the LTC4367 100V overvoltage (OV), undervoltage (UV), and reverse supply protection controller.

This controller protects circuits from input voltages that may be too high, too low or negative. It operates by controlling the gates of two back-to-back connected N-channel MOSFETs to keep the output in a safe range. The UV and OV setpoints are configured by the resistive divider on the UV and OV inputs. Asserting the SHDN pin disables the MOSFETs and places the LTC4367 in a low current shutdown state. The FAULT pin asserts when the controller is in the shutdown mode or when the input voltage is outside of the UV/OV window. The LTC4367 can withstand DC voltages between -40V and 100V and has an operating range of 2.5V to 60V.

The DC2417A includes the LTC4367, two back-to-back connected power MOSFETs, three jumpers and three LEDs to indicate the input and output voltages and the FAULT pin signal.

The DC2417A is assembled in two options: DC2417A-A, which is populated with LTC4367, and DC2417A-B, which uses LTC4367-1.

Design files for this circuit board are available at http://www.linear.com/demo/DC2417A

∠ , LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{IN}	Input Voltage Range	Operating Range Protection Range	2.5 -40		60 100	V V
V _{IN(UVLO)}	Input Supply Undervoltage Lockout	V _{IN} Rising	1.8	2.2	2.4	V
I _{VIN}	Input Supply Current; On Off	$\frac{\overline{SHDN}}{SHDN} = 2.5V$ $\overline{SHDN} = 0V, V_{IN} = V_{OUT}$		30 5	90 20	μΑ μΑ
I _{VIN(R)}	Reverse Input Supply Current	$V_{IN} = -40V, V_{OUT} = 0V$		-1.5	-2	mA
ΔV_{GATE}	Gate Drive (GATE – V _{OUT})	$ \begin{array}{l} V_{IN} = V_{OUT} = 5.0V, \ I_{GATE} = 0\mu A, \ -1\mu A \\ V_{IN} = V_{OUT} = 12V \ to \ 34V, \ I_{GATE} = -1\mu A \end{array} $	7.2 10	8.7 11	10.8 12.2	V V
I _{GATE(UP)}	Gate Pull-Up Current	$GATE = 15V, V_{IN} = V_{OUT} = 12V$	-20	-35	-50	μA
IGATE(FAST)	Gate Fast Pull-Down Current	$GATE = 20V, V_{IN} = V_{OUT} = 12V$	30	60	90	mA
IGATE(SLOW)	Gate Slow Pull-Down Current	$GATE = 20V, V_{IN} = V_{OUT} = 12V$	50	90	160	μA
V _{UV}	UV Input Threshold Voltage	UV Falling	492.5	500	507.5	mV
V _{OV}	OV Input Threshold Voltage	OV Rising	492.5	500	507.5	mV
t _{GATE(FAST)}	Gate Fast Turn-Off Delay	C _{GATE} = 2.2nF, UV or OV Fault		2	4	μs
t _{FAULT}	OV, UV Fault Propagation Delay	Overdrive = 50mV, $V_{IN} = V_{OUT} = 12V$		1	2	μs
V _{SHDN}	SHDN Input Threshold	SHDN Falling	0,4	0.75	1.2	V
V _{UV_BOARD}	Board UV Range		5.75	5.97	6.17	V
V _{OV_BOARD}	Board OV Range		14.44	14.95	15.47	V

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

dc2417af

OPERATING PRINCIPLES

The LTC4367 monitors the input voltage and disconnects downstream circuits when the input voltage is too low, too high or negative. The LTC4367 provides accurate overvoltage and undervoltage comparators to ensure that power is applied to the system only if the input supply is within the allowable voltage window. Reverse supply protection circuits automatically isolate the load from negative input voltages. During normal operation, a high voltage charge pump enhances the gate of the external N-channel power MOSFETs.

The LTC4367 consumes 5 μA during shutdown and 70 μA while operating.

QUICK START PROCEDURE

DC2417A is easy to set up to evaluate the performance of the LTC4367. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

Reverse Voltage Tests

- 1 Set JP1 to EN.
- 2 Set JP2 and JP3 to CONNECT LED.
- 3 Connect a power supply across VIN and GND in negative configuration (connect positive terminal to GND and negative terminal to VIN).
- 4 Connect voltmeters at the input and output and an ammeter in series with the supply.
- 5 Ramp VIN down to –30V (referenced to GND).
- 6 Verify output voltage is 0V and all LEDs are off.
- 7 Set JP2 and JP3 to OPEN position and measure the input current. It should be \leq 2.4mA.
- 8 Ramp VIN back to 0V and set JP2 and JP3 to CONNECT LED position.

Undervoltage/Overvoltage Test

9 Correct the polarity of the power supply connection across VIN to GND (connect positive terminal to VIN and negative terminal to GND).

- 10 Ramp supply up to 60V and verify that the green VIN LED and the red FAULT LED light up, but the green VOUT LED, does not light up.
- 11 Ramp supply down from 60V to 0V and verify the green VIN LED, red FAULT LED, green VOUT LED, and VOUT voltage according to Table 1 below.
- 12 Repeat steps 10 and 11 with a 3 A resistive load connected between VOUT and GND.

Table 1

VIN	VOUT	VIN LED	VOUT LED	FAULT LED
0V to 5.97V	0V	Off/Dim/On	Off	On
5.97V to 14.95V	V _{IN}	On	On	Off
14.95V to 60V	0V	On	Off	On

- 13 Remove load and set supply to 9V.
- 14 Move jumpers and verify LEDs according to Table 2 below.

JP1	JP2/JP3	VIN LED	VOUT LED
EN	CONNECT LED	On	On
DIS	CONNECT LED	On	Off
EN	OPEN	Off	Off

dc2417at

QUICK START PROCEDURE

Figure 1a. Reverse Voltage Test

QUICK START PROCEDURE

Figure 1b. Undervoltage/Overvoltage Test

DEMO MANUAL DC2417A

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dc2417af

5

DEMO MANUAL DC2417A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

