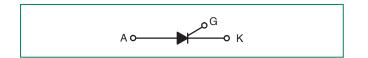


Surface Mount > 200 - 600V > C106 Series

C106 Series

Pin Out


Description

Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.

Features

- Glassivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Sensitive Gate Triggering
- These are Pb-Free Devices

Functional Diagram

Datasheet

Resources

Samples

Po

Surface Mount > 200 - 600V > C106 Series

Maximum Ratings ($T_{J} = 25^{\circ}C$ unless otherwise noted)

Rating		Symbol	Value	Unit
	C106B	V _{drm} , V _{rrm}	200	
Peak Repetitive Off-State Voltage (Note 1) ($T_1 = 25$ to 110°C, Gate Open)	C106D, C106D1*		400	V
	C106M,		600	
On-State RMS Current (T _c = 70°C)(Full Cycle Sine Wave	e 50 to 60 Hz)	I _{T (RMS)}	4.0	А
Average On–State Current (180° Conduction Angles, T _c	= 80°C)	I _{T(AV)}	2.55	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, $T_J = +25^{\circ}C$)	I _{TSM}	20	A	
Circuit Fusing Considerations (t = 8.3 ms)	l²t	1.65	A2s	
Forward Peak Gate Power (Pulse Width \leq 1.0 µsec, T _c =	P _{GM}	0.5	W	
Forward Average Gate Power (Pulse Width \leq 1.0 µsec, T	P _{G(AV)}	0.1	W	
Operating Junction Temperature Range	TJ	-40 to +110	°C	
Storage Temperature Range	T _{stg}	-40 to +150	°C	
Mounting Torque (Note 2)	_	6.0	in. lb.	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

2. Torque rating applies with use of torque washer (Shakeproof WD19523 or equivalent). Mounting Torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heat-sink contact pad are common.

Thermal Characteristics			
Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{ajc}	3.0	°C/W
Thermal Resistance, Junction-to-Ambient	R _{sja}	75	°C/W
Maximum Device Temperature for Soldering Purposes 1/8 in. from case for 10 Secs Maximum	TL	260	°C

Surface Mount > 200 - 600V > C106 Series

Electrical Characteristics - **OFF** ($T_1 = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	$T_J = 25^{\circ}C$	I _{DRM} ,	_	-	10	μA
(V_{_{AK}} = Rated V_{_{DRM}} \text{ or } V_{_{RRM'}} R_{_{GK}} = 1 \ \Omega k)	T _J = 110°C	I _{RRM}	-	-	100	μA

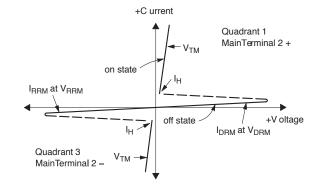
Electrical Characteristics · **ON** ($T_1 = 25^{\circ}$ C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Forward On-State Voltage (Note 3) ($I_{TM} = 4 A$)		V _{TM}	-	-	2.2	V
Gate Trigger Current (Continuous dc)	$T_J = 25^{\circ}C$		_	15	200	
(V_{_{\rm D}} = 12 V, R_{_{\rm L}} = 100 $\Omega,$ All Quadrants)	$T_{J} = -40^{\circ}C$	GT	_	35	500	μA
Peak Reverse Gate Voltage (I_{gR} = 10 µA)		V _{grm}	-	-	6.0	V
Gate Trigger Voltage (Continuous dc)	$T_J = 25^{\circ}C$		0.4	0.60	0.8	V
$(V_{_{D}} = 12 \text{ Vdc}, \text{ R}_{_{L}} = 100 \Omega, \text{T}_{_{C}} = 25^{\circ}\text{C})$	$T_{J} = -40^{\circ}C$	V _{gt}	0.5	0.75	1.0	V
Gate Non-Trigger Voltage (Continuous dc) (Note 4)		V _{gd}	0.2	-	-	V
Latching Current	$T_J = 25^{\circ}C$		-	0.20	5.0	
(V _{AK} = 12 V, I _G = 20 mA, R _{GK} = 1 kΩ)	$T_{J} = -40^{\circ}C$		_	0.35	7.0	mA
Helding Current	T _J = 25°C		_	0.19	5.0	
Holding Current ($V_{\rm p}$ = 12 Vdc)	$T_{J} = -40^{\circ}C$	I _H	-	0.33	7.0	mA
(Initiating Current = 20 mA, $R_{GK} = 1 k\Omega$)	T _J = +110°C		-	0.07	2.0	

Dynamic Characteristics

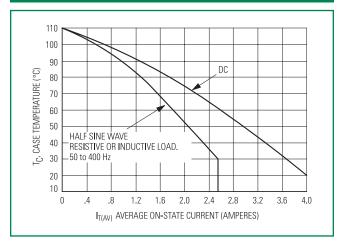
Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate-of-Rise of Off State Voltage (V_{AK} = Rated V_{DRM} Exponential Waveform, R_{GK} = 1k Ω , T_{J} = 110°C)	dv/dt	-	8.0	-	V/µs

3. Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.


4. R_{GK} is not included in measurement.

Surface Mount > 200 - 600V > C106 Series

Voltage Current Characteristic of SCR


Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Surface Mount > 200 - 600V > C106 Series

Figure 1. Average Current Derating

Figure 3. Typical Gate Trigger Current vs. Junction Temp

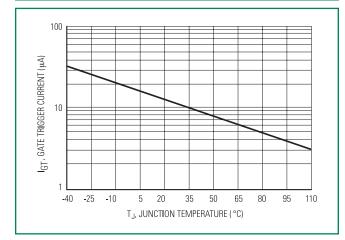
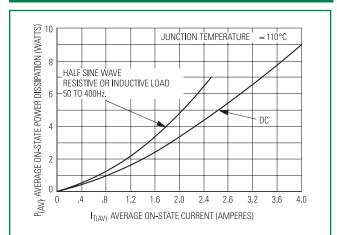
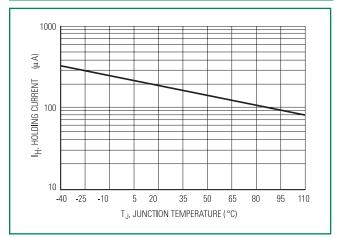
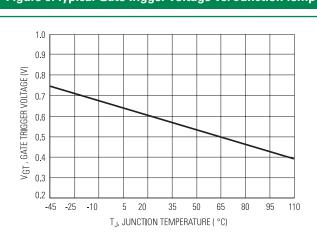





Figure 2. Maximum On-State Power Dissipation

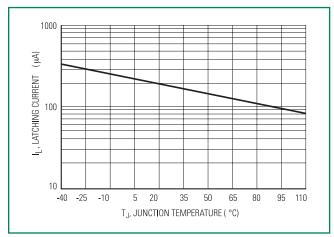
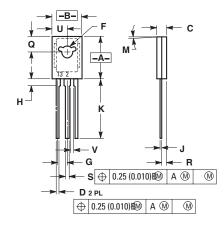
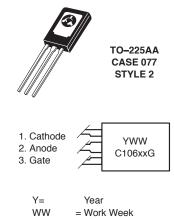

Figure 4. Typical Holding Current vs. Junction Temp

Figure 5. Typical Gate Trigger Voltage vs. Junction Temp


Figure 5. Typical Latching Current vs. Junction Temp

Surface Mount > 200 - 600V > C106 Series

Dimensions



.	Inches		Millim	neters	
Dim	Min	Max	Min	Max	
А	0.425	0.435	10.80	11.04	
В	0.295	0.305	7.50	7.74	
С	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094	0.094 BSC		BSC	
Н	0.050	0.095	1.27	2.41	
J	0.015°	0.025	0.39°	0.63	
K	0.575	0.655	14.61	16.63	
М	5 T	5 TYP		ΥP	
Q	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
V	0.040		1.02		

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

Part Marking System

WW	= Work Week	
C106xx	= Device Code	
XX	= B, D, D1, M, M1	
G=	Pb–Free Package	

Pin Assignment				
1	Cathode			
2	Anode			
3	Gate			

Ordering Informat	tion	
Device	Package	Shipping
C106BG		
C106DG		
C106D1G*	TO225AA (Pb-Free)	500 Units/Box
C106MG		
C106M1G*		

*D1 signifies European equivalent for D suffix and M1 signifies European equivalent for M suffix.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: <u>www.littlefuse.com/disclaimer-electronics</u>