

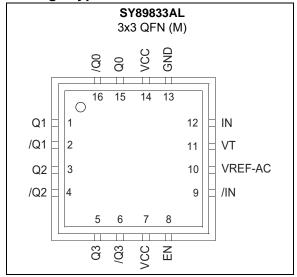
3.3V Low-Noise, Ultra-Precision 1:4 LVDS Fanout Buffer/Translator with Internal Termination

Features

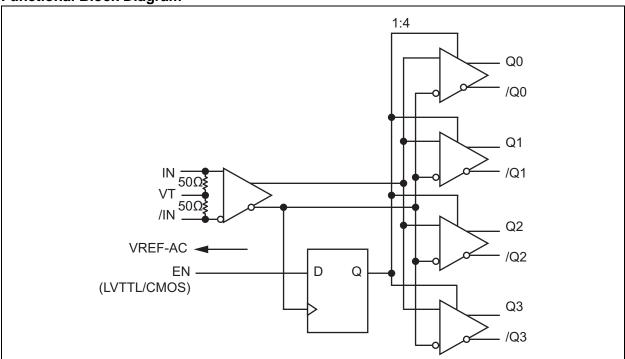
- · Ultra-Low Jitter Design:
 - 80 fs_{RMS} Additive Phase Jitter (typical)
- Guaranteed AC Performance Over Temperature and Voltage:
 - DC-to > 2 GHz throughput
 - <470 ps Propagation Delay (IN-to-Q)
 - <20 ps Within-Device Skew
 - <190 ps Rise/Fall Times
- Unique Input Termination and V_T Pin Accepts DCand AC-Coupled Inputs
- · High-Speed LVDS Outputs
- · 3.3V Power Supply Operation
- Industrial Temperature Range: –40°C to +85°C
- Available in 16-Pin (3 mm × 3 mm) QFN Package

Applications

- · Processor Clock Distribution
- SONET Clock Distribution
- · Fibre Channel Clock Distribution
- · Gigabit Ethernet Clock Distribution


General Description

The SY89833AL is a lower noise version of the SY89833L 3.3V, high-speed 2 GHz differential, low voltage differential swing (LVDS) 1:4 fanout buffer optimized for ultra-low skew applications. Within device skew is guaranteed to be less than 20 ps over supply voltage and temperature.


The differential input buffer has a unique internal termination design that allows access to the termination network through a V_T pin. This feature allows the device to easily interface to different logic standards. A V_{REF-AC} reference is included for AC-coupled applications.

The SY89833AL is part of Microchip's high-speed clock synchronization family. For 2.5V applications, the SY89832U provides similar functionality while operating from a $2.5V\pm5\%$ supply. For applications that require a different I/O combination, consult the Microchip website and choose from a comprehensive product line of high-speed, low-skew fanout buffers, translators, and clock generators.

Package Type

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{CC})	
Input Voltage (V _{IN})	
LVDS Output Current (I _{OUT})	~ ~
Input Current Source or Sink Current on (IN, /IN)	±50 mA
V _T Current Source or Sink Current on (V _T)	±100 mA
V _{REF-AC} Current Source or Sink Current on (V _{REF-AC})	±2 mA
Operating Ratings ‡	
Supply Voltage Range	+3.0V to +3.6V

[†] Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

[‡] Notice: The device is not guaranteed to function outside its operating ratings.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical	Electrical Characteristics: T _A = -40°C to +85°C, unless otherwise stated. (Note 1).								
Symbol	Parameters	Min.	Тур.	Max.	Units	Conditions			
V _{CC}	Power Supply Voltage Range	3.0	3.3	3.6	V	_			
I _{CC}	Power Supply Current	_	75	100	mA	No load; max. V _{CC}			
R _{IN}	Input Resistance (IN-to-V _T)	45	50	55	Ω	_			
R _{DIFF-IN}	Differential Input Resistance (IN-to-/IN)	90	100	110	Ω	_			
V_{IH}	Input High Voltage (IN-to-/IN)	1.2		V_{CC}	٧	_			
V _{IL}	Input Low Voltage (IN-to-/IN)	0	1	V _{IH} - 0.1	٧				
V _{IN}	Input Voltage Swing (IN-to-/IN)	0.1	_	1.7	٧	See Figure 5-3			
V _{DIFF_IN}	Differential Input Voltage	0.2	1	1	٧	See Figure 5-4			
I _{IN}	Input Current (IN, /IN)	_		45	mA	Note 2			
V _{REF-AC}	Reference Voltage	V _{CC} - 1.525	V _{CC} - 1.425	V _{CC} - 1.325	٧	_			

- **Note 1:** The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
 - 2: Due to the internal termination (see "Input Buffer Structure" section) the input current depends on the applied voltages at IN, /IN, and V_T inputs. Do not apply a combination of voltages that causes the input current to exceed the maximum limit.

TABLE 1-2: LVDS OUTPUTS DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V_{CC} = 3.3V ±10%, R_L = 100 Ω across the outputs; T_A = -40°C to +85°C. (Note 1)								
Symbol	abol Parameters Min. Typ. Max. Units Conditions							
V _{OUT}	Output Voltage Swing	250	325	_	mV	see Figure 5-3		
V _{DIFF_OUT}	Differential Output Voltage Swing	500	650	_	mV	see Figure 5-4		
V _{OCM}	Output Common-Mode Voltage	1.125	_	1.275	V	_		
ΔV_{OCM}	Change in Common-Mode Voltage	-50	_	50	mV	—		

Note 1: The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

TABLE 1-3: LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS

Electrical	Electrical Characteristics: $V_{CC} = 3.3V \pm 10\%$, $T_A = -40^{\circ}C$ to +85°C. (Note 1)							
Symbol	Parameters	Min.	Тур.	Max.	Units	Conditions		
V_{IH}	Input High Voltage	2.0	_	V _{CC}	V	_		
V_{IL}	Input Low Voltage	0	_	0.8	V	_		
I _{IH}	Input High Current	-125	_	30	μA	_		
I _{IL}	Input Low Current	-300	_	_	μA	_		

Note 1: The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

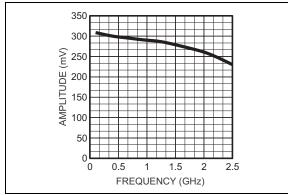
TABLE 1-4: AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{CC} = 3.3V \pm 10\%$, $R_L = 100\Omega$ across the outputs; $T_A = -40^{\circ}$ C to +85°C unless otherwise stated. (Note 1)

Symbol	Parameters	Min.	Тур.	Max.	Units	Conditions
f _{MAX}	Maximum Frequency	2.0	_	_	GHz	V _{OUT} ≥ 200 mV
t _{pd}	Propagation Delay	250	_	470	ps	_
t _{SKEW}	Within-Device Skew	_	5	20	ps	Note 2
	Part-to-Part Skew	_	_	200	ps	Note 3
t _S	Set-Up Time	400	_	_	ps	Note 4
t _H	Hold Time	400	_	_	ps	Note 4
t _{JITTER}	Additive Phase Jitter, RMS	_	80	_	fs	622.08 MHz @ 3.3V, Integration range: 12 kHz to 20 MHz
t _r /t _f	Output Rise/Fall Times (20% to 80%)	60	110	190	ps	At Full Output Swing
_	Duty Cycle	47	_	53	%	Differential I/O

- **Note 1:** High-frequency AC parameters are guaranteed by design and characterization.
 - 2: Within device skew is measured between two different outputs under identical input transitions.
 - **3:** Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.
 - **4:** Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold times do not apply.

TEMPERATURE SPECIFICATIONS


Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Temperature Ranges	Temperature Ranges							
Junction Operating Temperature	T_J	_	_	+125	°C	Note 1		
Storage Temperature Range	T _S	-65	_	+150	°C	_		
Lead Temperature	_	_	_	+260	°C	Soldering, 20s		
Ambient Temperature	T _A	-40	_	+85	°C	_		
Package Thermal Resistances (Note 2)								
16-pin 3 mm x 3 mm QFN (Still-Air)	θ_{JA}	_	60	_	°C/W	_		
16-pin 3 mm x 3 mm QFN	Ψ_{JB}	_	33	_	°C/W	_		

- Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
 - 2: Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. Ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air number, unless otherwise stated.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

 V_{CC} = 3.3V, GND = 0V, V_{IN} = 400 mV, R_L = 100 Ω across the outputs; T_A = +25°C unless otherwise stated.

FIGURE 2-1: Output Swing vs. Frequency.

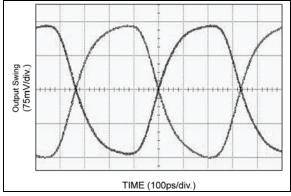


FIGURE 2-4: 1.5 GHz Output.

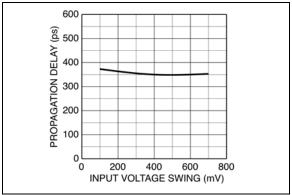


FIGURE 2-2: Propagation Delay vs. Input Voltage Swing.

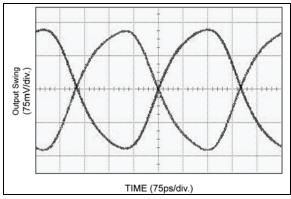


FIGURE 2-5: 2 GHz Output.

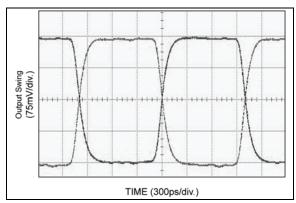


FIGURE 2-3: 500 MHz Output.

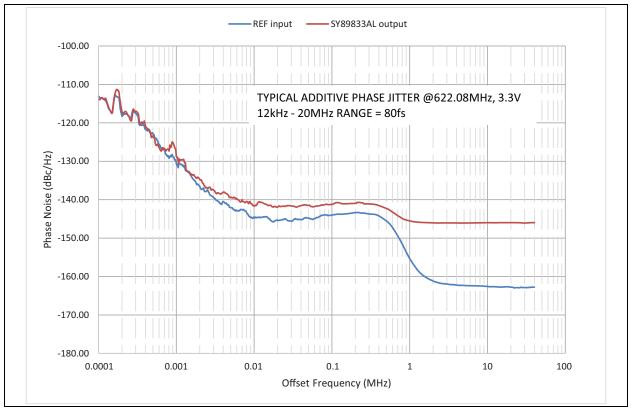


FIGURE 2-6: Typical Additive Phase Jitter.

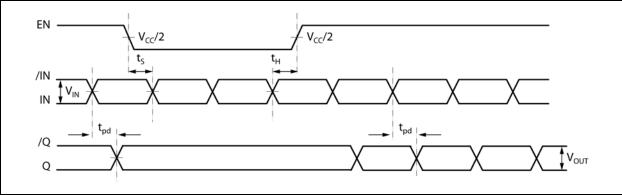


FIGURE 2-7: Timing Diagram.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
15, 16 1, 2 3, 4 5, 6	Q0, /Q0 Q1, /Q1 Q2, /Q2 Q3, /Q3	LVDS Differential Outputs: Normally terminated with 100Ω across the pair (Q, /Q). See the LVDS Outputs section, Figure 5-1. Unused outputs should be terminated with a 100Ω resistor across each pair.
8	EN	This single-ended TTL/CMOS-compatible input functions as a synchronous output enable. The synchronous enable ensures that enable/disable will only occur when the outputs are in a logic low state. Note that this input is internally connected to a 25 k Ω pull-up resistor and will default to logic high state (enabled) if left open.
9, 12	/IN, IN	Differential Input: This input pair is the differential signal input to the device. Input accepts AC- or DC-Coupled differential signals as small as 100 mV. Each pin of the pair internally terminates to a V_T pin through 50Ω . Note that this input will default to an intermediate state if left open. Please refer to the Input Interface Applications section for more details.
10	V _{REF-AC}	Reference Voltage: These outputs bias to V_{CC} – 1.425V.They are used when AC coupling the inputs (IN, /IN). For AC-coupled applications, connect V_{REF-AC} to V_{T} pin and bypass with 0.01 μ F low-ESR capacitor to V_{CC} . See the Input Interface Applications section for more details. Maximum sink/source current is ±1.5 mA.
11	V _T	Input Termination Center-Tap: Each side of the differential input pair terminates to a V_T pin. The V_T pin provides a center-tap to a termination network for maximum interface flexibility. See the Input Interface Applications section for more details.
13	GND	Ground. GND pin and exposed pad must be connected to the most negative potential of the device ground.
7, 14	V _{CC}	Positive Power Supply: Bypass with 0.1 $\mu F/\!/0.01~\mu F$ low-ESR capacitors and place as close as possible to each V_{CC} pin.

TABLE 3-2: TRUTH TABLE

IN	/IN	EN	Q	/Q
0	1	1	0	1
1	0	1	1	0
Х	X	0	0 (Note 1)	1 (Note 1)

Note 1: On next negative transition of the input signal (IN).

4.0 INPUT INFORMATION

4.1 Input Stage

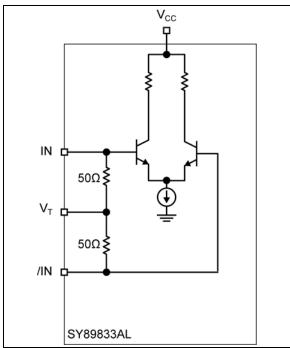
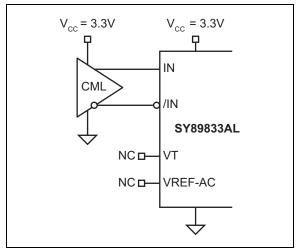



FIGURE 4-1: Simplified Differential Input Buffer.

4.2 Input Interface Applications

FIGURE 4-2: DC-Coupled CML Input Interface (Option: May Connect V_T to V_{CC}).

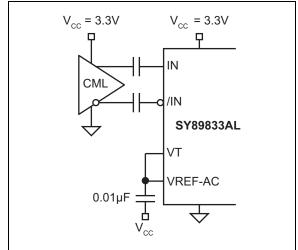


FIGURE 4-3: AC-Coupled CML Input Interface.

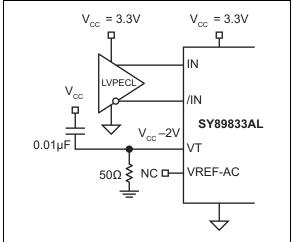


FIGURE 4-4: DC-Coupled LVPECL Input Interface.

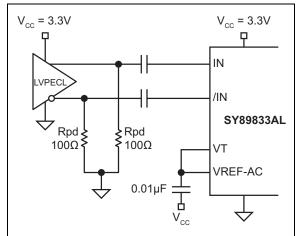


FIGURE 4-5: AC-Coupled LVPECL Input Interface.

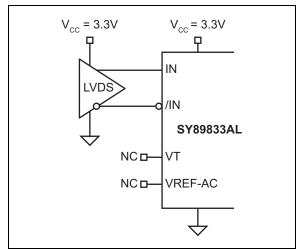


FIGURE 4-6: LVDS Input Interface.

5.0 LVDS OUTPUTS

LVDS specifies a small swing of 325 mV typical, on a nominal 1.20V common-mode above ground. The common-mode voltage has tight limits to permit large variations in ground noise between a LVDS driver and receiver.

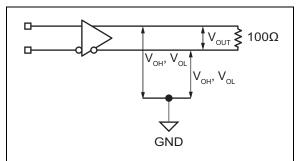


FIGURE 5-1: LVDS Differential Measurement.

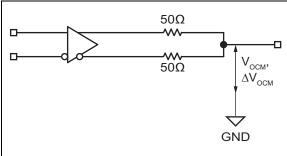


FIGURE 5-2: LVDS Common-Mode Measurement.

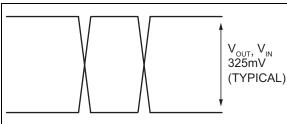


FIGURE 5-3: Single-Ended Swing.

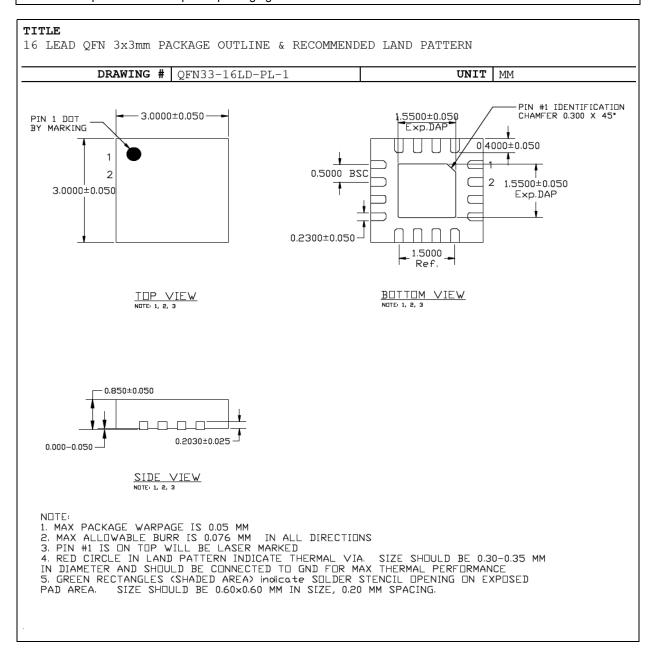
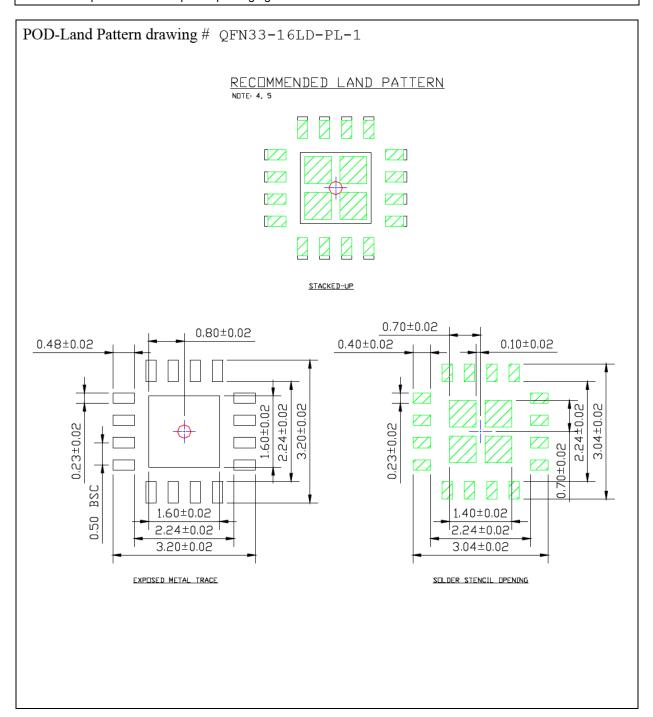



FIGURE 5-4: Differential Swing.

6.0 PACKAGING INFORMATION


16-Lead QFN 3 mm x 3 mm Package Outline

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

16-Lead QFN 3 mm x 3 mm Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

APPENDIX A: REVISION HISTORY

Revision A (January 2018)

- Converted Micrel document SY89833AL to Microchip data sheet DS20005608A.
- Minor text changes throughout.
- Updated Figure 2-6.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO. **Device** Voltage Package Temperature **Special** Option

Device: SY89833A: 3.3V Low-Noise, Ultra-Precision 1:4 LVDS Fanout Buffer/Translator with Internal

Termination

Voltage Option: 3.3V Only

16-Pin 3 mm x 3 mm QFN Package:

-40°C to +85°C Temperature:

Special Blank = Bulk, 100 pcs.

Processing: Tape and Reel, 1000/Reel

Note 1: Contact factory for die availability. Dice are guaranteed at T_A =

25°C, DC Electricals only.

Examples:

SY89833ALMG: 3.3V Low-Noise, Ultra-Pre-

> cision 1:4 LVDS Fanout Buffer/Translator with Internal Termination, 3.3V Voltage Option, -40°C to +85°C Temp. Range, 16-Pin QFN,

100 pcs.

SY89833ALMG-TR: b)

3.3V Low-Noise, Ultra-Precision 1:4 LVDS Fanout Buffer/Translator with Internal Termination, 3.3V Voltage Option, -40°C to +85°C Temp. Range, 16-Pin QFN,

1000/Reel

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2597-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820