

# 56F807

Data Sheet Preliminary Technical Data

56F800 16-bit Digital Signal Controllers

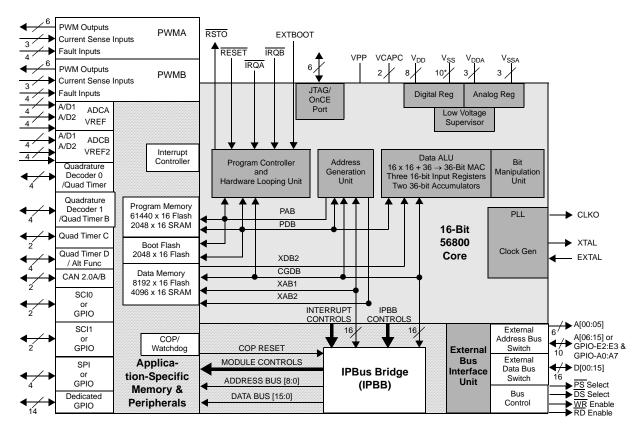
DSP56F807 Rev. 16 09/2007



freescale.com



### **Document Revision History**


| Version History | Description of Change                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev. 16         | Added revision history.<br>Added this text to footnote 2 in <b>Table 3-8</b> : "However, the high pulse width does not have to<br>be any particular percent of the low pulse width." |



## **56F807 General Description**

- Up to 40 MIPS at 80MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- Hardware DO and REP loops
- MCU-friendly instruction set supports both DSP and controller functions: MAC, bit manipulation unit, 14 addressing modes
- 60K × 16-bit words (120KB) Program Flash
- 2K × 16-bit words (4KB) Program RAM
- $8K \times 16$ -bit words (16KB) Data Flash
- $4K \times 16$ -bit words (8KB) Data RAM
- $2K \times 16$ -bit words (4KB) Boot Flash
- Up to  $64K \times 16$  bit words (128KB) each of external Program and Data memory

- Two 6 channel PWM Modules
- Four 4 channel, 12-bit ADCs
- Two Quadrature Decoders
- CAN 2.0 B Module
- Two Serial Communication Interfaces (SCIs)
- Serial Peripheral Interface (SPI)
- Up to four General Purpose Quad Timers
- JTAG/OnCE<sup>™</sup> port for debugging
- 14 Dedicated and 18 Shared GPIO lines
- 160-pin LQFP or 160 MAPBGA Packages



\*includes TCS pin which is reserved for factory use and is tied to VSS

#### 56F807 Block Diagram



## Part 1 Overview

### 1.1 56F807 Features

### 1.1.1 Processing Core

- Efficient 16-bit 56800 family controller engine with dual Harvard architecture
- As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency
- Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)
- Two 36-bit accumulators including extension bits
- 16-bit bidirectional barrel shifter
- Parallel instruction set with unique processor addressing modes
- Hardware DO and REP loops
- Three internal address buses and one external address bus
- Four internal data buses and one external data bus
- Instruction set supports both DSP and controller functions
- Controller style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/OnCE debug programming interface

### 1.1.2 Memory

- Harvard architecture permits as many as three simultaneous accesses to Program and Data memory
- On-chip memory including a low-cost, high-volume Flash solution
  - 60K × 16-bit words of Program Flash
  - 2K × 16-bit words of Program RAM
  - $8K \times 16$ -bit words of Data Flash
  - $4K \times 16$ -bit words of Data RAM
  - $2K \times 16$ -bit words of Boot Flash
- Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states
  - As much as  $64K \times 16$  bits of Data memory
  - As much as  $64K \times 16$  bits of Program memory

### 1.1.3 Peripheral Circuits for 56F807

- Two Pulse Width Modulator modules each with six PWM outputs, three Current Sense inputs, and four Fault inputs, fault tolerant design with dead time insertion, supports both center- and edge-aligned modes
- Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized
- Two Quadrature Decoders each with four inputs or two additional Quad Timers



- Two dedicated General Purpose Quad Timers totaling six pins: Timer C with two pins and Timer D with four pins
- CAN 2.0 B Module with 2-pin port for transmit and receive
- Two Serial Communication Interfaces each with two pins (or four additional GPIO lines)
- Serial Peripheral Interface (SPI) with configurable 4-pin port (or four additional GPIO lines)
- Computer-Operating Properly (COP) Watchdog timer
- Two dedicated external interrupt pins
- 14 dedicated General Purpose I/O (GPIO) pins, 18 multiplexed GPIO pins
- External reset input pin for hardware reset
- External reset output pin for system reset
- JTAG/On-Chip Emulation (OnCE<sup>TM</sup>) for unobtrusive, processor speed-independent debugging
- Software-programmable, Phase Locked Loop-based frequency synthesizer for the controller core clock

### 1.1.4 Energy Information

- Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs
- Uses a single 3.3V power supply
- On-chip regulators for digital and analog circuitry to lower cost and reduce noise
- Wait and Stop modes available

## 1.2 56F807 Description

The 56F807 is a member of the 56800 core-based family of processors. It combines, on a single chip, the processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact program code, the 56F807 is well-suited for many applications. The 56F807 includes many peripherals that are especially useful for applications such as motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and control, automotive control, engine management, noise suppression, remote utility metering, industrial control for power, lighting, and automation.

The 56800 core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized control applications.

The 56F807 supports program execution from either internal or external memories. Two data operands can be accessed from the on-chip Data RAM per instruction cycle. The 56F807 also provides two external dedicated interrupt lines and up to 32 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.

The 56F807 controller includes 60K, 16-bit words of Program Flash and 8K words of Data Flash (each programmable through the JTAG port) with 2K words of Program RAM and 4K words of Data RAM. It also supports program execution from external memory.



A total of 2K words of Boot Flash is incorporated for easy customer-inclusion of field-programmable software routines that can be used to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can be independently bulk erased or erased in page sizes of 256 words. The Boot Flash memory can also be either bulk or page erased.

A key application-specific feature of the 56F807 is the inclusion of two Pulse Width Modulator (PWM) modules. These modules each incorporate three complementary, individually programmable PWM signal outputs (each module is also capable of supporting six independent PWM functions, for a total of 12 PWM outputs) to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge- and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors), both BDC and BLDC (Brush and Brushless DC motors), SRM and VRM (Switched and Variable Reluctance Motors), and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A "smoke-inhibit", write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to synchronize the analog-to-digital converters.

The 56F807 incorporates two separate Quadrature Decoders capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alarm when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCI), one Serial Peripheral Interface (SPI), and four Quad Timers. Any of these interfaces can be used as General-Purpose Input/Outputs (GPIO) if that function is not required. A Controller Area Network interface (CAN Version 2.0 A/B-compliant), an internal interrupt controller, and 14 dedicated GPIO lines are also included on the 56F807.

### **1.3 State of the Art Development Environment**

- Processor Expert<sup>TM</sup> (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system.
- The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.





### **1.4 Product Documentation**

The four documents listed in **Table 1-1** are required for a complete description and proper design with the 56F807. Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices, Freescale Literature Distribution Centers, or online at **http://www.freescale.com**.

| Торіс                                  | Description                                                                                                 | Order Number  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|
| 56800E<br>Family Manual                | Detailed description of the 56800 family architecture,<br>and 16-bit core processor and the instruction set | 56800EFM      |
| DSP56F801/803/805/807<br>User's Manual | Detailed description of memory, peripherals, and interfaces of the 56F801, 56F803, 56F805, and 56F807       | DSP56F801-7UM |
| 56F807<br>Technical Data Sheet         | Electrical and timing specifications, pin descriptions, and package descriptions (this document)            | DSP56F807     |
| 56F807<br>Errata                       | Details any chip issues that might be present                                                               | 56F807E       |

#### Table 1-1 56F807 Chip Documentation

### 1.5 Data Sheet Conventions

This data sheet uses the following conventions:

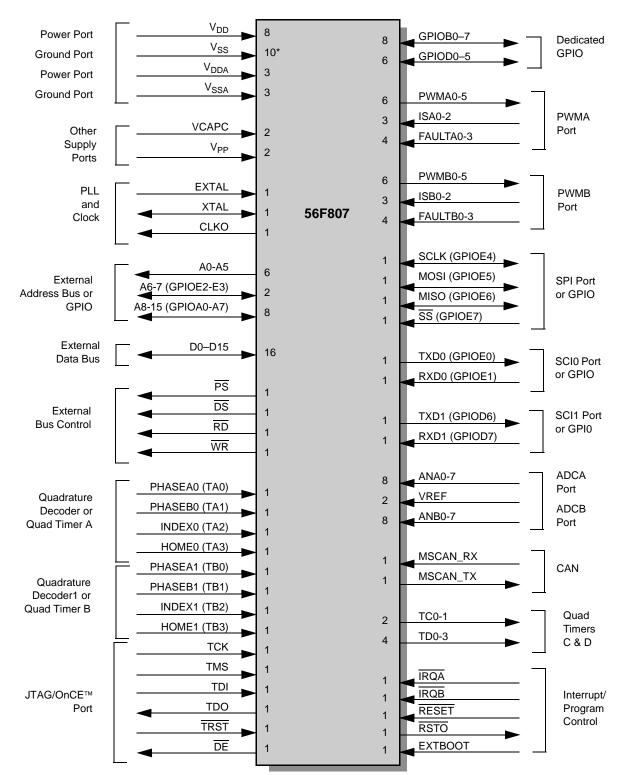
| OVERBAR      | This is used to indicate a signal that is active when pulled low. For example, the $\overline{\text{RESET}}$ pin is active when low. |                            |                               |                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|----------------------------------|
| "asserted"   | A high true (active high) s                                                                                                          | signal is high or a low tr | ue (active low) signal is lov | Ν.                               |
| "deasserted" | A high true (active high) s                                                                                                          | signal is low or a low tru | ie (active low) signal is hig | h.                               |
| Examples:    | Signal/Symbol                                                                                                                        | Logic State                | Signal State                  | Voltage <sup>1</sup>             |
|              | PIN                                                                                                                                  | True                       | Asserted                      | V <sub>IL</sub> /V <sub>OL</sub> |
|              | PIN                                                                                                                                  | False                      | Deasserted                    | V <sub>IH</sub> /V <sub>OH</sub> |
|              | PIN                                                                                                                                  | True                       | Asserted                      | V <sub>IH</sub> /V <sub>OH</sub> |
|              | PIN                                                                                                                                  | False                      | Deasserted                    | V <sub>IL</sub> /V <sub>OL</sub> |
|              |                                                                                                                                      |                            |                               |                                  |

1. Values for  $V_{IL}$ ,  $V_{OL}$ ,  $V_{IH}$ , and  $V_{OH}$  are defined by individual product specifications.



# Part 2 Signal/Connection Descriptions

## 2.1 Introduction


The input and output signals of the 56F807 are organized into functional groups, as shown in **Table 2-1** and as illustrated in **Figure 2-1**. In **Table 2-2** through **Table 2-19**, each table row describes the signal or signals present on a pin.

| Functional Group                                         | Number of<br>Pins | Detailed<br>Description |
|----------------------------------------------------------|-------------------|-------------------------|
| Power (V <sub>DD</sub> or V <sub>DDA</sub> )             | 11                | Table 2-2               |
| Ground (V <sub>SS</sub> or V <sub>SSA</sub> )            | 13                | Table 2-3               |
| Supply Capacitors & V <sub>PP</sub>                      | 4                 | Table 2-4               |
| PLL and Clock                                            | 3                 | Table 2-5               |
| Address Bus <sup>1</sup>                                 | 16                | Table 2-6               |
| Data Bus                                                 | 16                | Table 2-7               |
| Bus Control                                              | 4                 | Table 2-8               |
| Interrupt and Program Control                            | 5                 | Table 2-9               |
| Dedicated General Purpose Input/Output                   | 14                | Table 2-10              |
| Pulse Width Modulator (PWM) Ports                        | 26                | Table 2-11              |
| Serial Peripheral Interface (SPI) Port <sup>1</sup>      | 4                 | Table 2-12              |
| Quadrature Decoder Ports <sup>2</sup>                    | 8                 | Table 2-13              |
| Serial Communications Interface (SCI) Ports <sup>1</sup> | 4                 | Table 2-15              |
| CAN Port                                                 | 2                 | Table 2-16              |
| Analog to Digital Converter (ADC) Ports                  | 20                | Table 2-17              |
| Quad Timer Module Ports                                  | 6                 | Table 2-18              |
| JTAG/On-Chip Emulation (OnCE)                            | 6                 | Table 2-19              |

1. Alternately, GPIO pins

2. Alternately, Quad Timer pins





\*includes TCS pin which is reserved for factory use and is tied to VSS

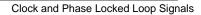
### Figure 2-1 56F807 Signals Identified by Functional Group<sup>1</sup>

<sup>1.</sup> Alternate pin functionality is shown in parenthesis.



## 2.2 Power and Ground Signals

#### **Table 2-2 Power Inputs**


| No. of Pins | Signal Name      | Signal Description                                                                                                                              |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 8           | V <sub>DD</sub>  | <b>Power</b> —These pins provide power to the internal structures of the chip, and should all be attached to $V_{\text{DD.}}$                   |
| 3           | V <sub>DDA</sub> | <b>Analog Power</b> —These pins is a dedicated power pin for the analog portion of the chip and should be connected to a low noise 3.3V supply. |

#### Table 2-3 Grounds

| No. of Pins | Signal Name      | Signal Description                                                                                                                                                       |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9           | V <sub>SS</sub>  | $\mbox{GND}$ These pins provide grounding for the internal structures of the chip and should all be attached to $V_{\mbox{SS}}$                                          |
| 3           | V <sub>SSA</sub> | Analog Ground—This pin supplies an analog ground.                                                                                                                        |
| 1           | TCS              | <b>TCS</b> —This Schmitt pin is reserved for factory use and must be tied to $V_{SS}$ for normal use. In block diagrams, this pin is considered an additional $V_{SS}$ . |

### Table 2-4 Supply Capacitors and VPP

| No. of<br>Pins | Signal<br>Name | Signal<br>Type | State During<br>Reset | Signal Description                                                                                                                                                                                                       |
|----------------|----------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2              | VCAPC          | Supply         | Supply                | <b>VCAPC</b> —Connect each pin to a 2.2uF or greater bypass capacitor in order to bypass the core logic voltage regulator (required for proper chip operation). For more information, please refer to <b>Section 5.2</b> |
| 2              | VPP            | Input          | Input                 | <b>VPP</b> —This pin should be left unconnected as an open circuit for normal functionality.                                                                                                                             |





## 2.3 Clock and Phase Locked Loop Signals

| No. of<br>Pins | Signal<br>Name | Signal<br>Type   | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|----------------|------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | EXTAL          | Input            | Input                 | <b>External Crystal Oscillator Input</b> —This input should be connected to an 8MHz external crystal or ceramic resonator. For more information, please refer to <b>Section 3.4</b> .                                                                                                                                                                                                              |
| 1              | XTAL           | Input/<br>Output | Chip-driven           | <b>Crystal Oscillator Output</b> —This output should be connected to an 8MHz external crystal or ceramic resonator. For more information, please refer to <b>Section 3.4</b> .<br>This pin can also be connected to an external clock source. For more information, please refer to <b>Section 3.4.2</b> .                                                                                         |
| 1              | CLKO           | Output           | Chip-driven           | <b>Clock Output</b> —This pin outputs a buffered clock signal. By programming the CLKOSEL[4:0] bits in the CLKO Select Register (CLKOSR), the user can select between outputting a version of the signal applied to XTAL and a version of the device's master clock at the output of the PLL. The clock frequency on this pin can also be disabled by programming the CLKOSEL[4:0] bits in CLKOSR. |

#### Table 2-5 PLL and Clock

## 2.4 Address, Data, and Bus Control Signals

| No. of<br>Pins | Signal<br>Name    | Signal<br>Type   | State During<br>Reset | Signal Description                                                                                                      |
|----------------|-------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
| 6              | A0–A5             | Output           | Tri-stated            | Address Bus—A0–A5 specify the address for external Program or Data memory accesses.                                     |
| 2              | A6–A7             | Output           | Tri-stated            | Address Bus—A6–A7 specify the address for external Program or Data memory accesses.                                     |
|                | GPIOE2-<br>GPIOE3 | Input/O<br>utput | Input                 | <b>Port E GPIO</b> —These two General Purpose I/O (GPIO) pins can individually be programmed as input or output pins.   |
|                |                   |                  |                       | After reset, the default state is Address Bus.                                                                          |
| 8              | A8–A15            | Output           | Tri-stated            | Address Bus—A8–A15 specify the address for external Program or Data memory accesses.                                    |
|                | GPIOA0-<br>GPIOA7 | Input/O<br>utput | Input                 | <b>Port A GPIO</b> —These eight General Purpose I/O (GPIO) pins can be individually programmed as input or output pins. |
|                |                   |                  |                       | After reset, the default state is Address Bus.                                                                          |

#### **Table 2-6 Address Bus Signals**



#### No. of State During Signal Signal **Signal Description** Pins Name Туре Reset 16 D0-D15 Input/O Tri-stated Data Bus-D0-D15 specify the data for external program or data utput memory accesses. D0–D15 are tri-stated when the external bus is inactive. Internal pullups may be active.

#### Table 2-7 Data Bus Signals

### Table 2-8 Bus Control Signals

| No. of<br>Pins | Signal<br>Name | Signal<br>Type | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|----------------|----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | PS             | Output         | Tri-stated            | <b>Program Memory Select</b> —PS is asserted low for external program memory access.                                                                                                                                                                                                                                                                                                                           |
| 1              | DS             | Output         | Tri-stated            | <b>Data Memory Select</b> —DS is asserted low for external data memory access.                                                                                                                                                                                                                                                                                                                                 |
| 1              | WR             | Output         | Tri-stated            | <b>Write Enable</b> — $\overline{WR}$ is asserted during external memory write cycles.<br>When WR is asserted low, pins D0–D15 become outputs and the device<br>puts data on the bus. When WR is deasserted high, the external data is<br>latched inside the external device. When WR is asserted, it qualifies the<br>A0–A15, PS, and DS pins. WR can be connected directly to the WE pin of<br>a Static RAM. |
| 1              | RD             | Output         | Tri-stated            | <b>Read Enable</b> —RD is asserted during external memory read cycles. When RD is asserted low, pins D0–D15 become inputs and an external device is enabled onto the device's data bus. When RD is deasserted high, the external data is latched inside the device. When RD is asserted, it qualifies the A0–A15, PS, and DS pins. RD can be connected directly to the OE pin of a Static RAM or ROM.          |

### 2.5 Interrupt and Program Control Signals

#### Table 2-9 Interrupt and Program Control Signals

| No. of<br>Pins | Signal<br>Name | Signal<br>Type     | State During<br>Reset | Signal Description                                                                                                                                                                                                                    |
|----------------|----------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | IRQA           | Input<br>(Schmitt) | Input                 | <b>External Interrupt Request A</b> —The IRQA input is a synchronized external interrupt request that indicates that an external device is requesting service. It can be programmed to be level-sensitive or negative-edge-triggered. |
| 1              | IRQB           | Input<br>(Schmitt) | Input                 | <b>External Interrupt Request B</b> —The IRQB input is an external interrupt request that indicates that an external device is requesting service. It can be programmed to be level-sensitive or negative-edge-triggered.             |



| No. of<br>Pins | Signal<br>Name | Signal<br>Type     | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|----------------|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | RSTO           | Output             | Output                | <b>Reset Output</b> —This output reflects the internal reset state of the chip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1              | RESET          | Input<br>(Schmitt) | Input                 | ResetThis input is a direct hardware reset on the processor. When<br>RESET is asserted low, the device is initialized and placed in the<br>Reset state. A Schmitt trigger input is used for noise immunity. When<br>the RESET pin is deasserted, the initial chip operating mode is<br>latched from the EXTBOOT pin. The internal reset signal will be<br>deasserted synchronous with the internal clocks, after a fixed number<br>of internal clocks.To ensure complete hardware reset, RESET and TRST should be<br>asserted together. The only exception occurs in a debugging<br>environment when a hardware device reset is required and it is<br>necessary not to reset the OnCE/JTAG module. In this case, assert<br>RESET, but do not assert TRST. |
| 1              | EXTBOOT        | Input<br>(Schmitt) | Input                 | <b>External Boot</b> —This input is tied to V <sub>DD</sub> to force device to boot from off-chip memory. Otherwise, it is tied to VSS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

### Table 2-9 Interrupt and Program Control Signals (Continued)

## 2.6 GPIO Signals

### Table 2-10 Dedicated General Purpose Input/Output (GPIO) Signals

| No.of<br>Pins | Signal<br>Name    | Signal<br>Type        | State During<br>Reset | Signal Description                                                                                                                                                                |
|---------------|-------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8             | GPIOB0-<br>GPIOB7 | Input<br>or<br>Output | Input                 | Port B GPIOThese eight pins are dedicated General Purpose I/O(GPIO) pins that can individually be programmed as input or outputpins.After reset, the default state is GPIO input. |
| 6             | GPIOD0-<br>GPIOD5 | Input<br>or<br>Output | Input                 | <b>Port D GPIO</b> —These six pins are dedicated GPIO pins that can individually be programmed as an input or output pins.<br>After reset, the default state is GPIO input.       |



## 2.7 Pulse Width Modulator (PWM) Signals

| Table 2-11 Pulse Width Modulator (PWMA and PWMB) Signals |
|----------------------------------------------------------|
|----------------------------------------------------------|

| No. of<br>Pins | Signal<br>Name | Signal<br>Type     | State During<br>Reset | Signal Description                                                                                                                                |
|----------------|----------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 6              | PWMA0-5        | Output             | Tri- stated           | PWMA0-5— Six PWMA output pins.                                                                                                                    |
| 3              | ISA0-2         | Input<br>(Schmitt) | Input                 | <b>ISA0-2</b> — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMA. |
| 4              | FAULTA0-3      | Input<br>(Schmitt) | Input                 | <b>FAULTA0-3</b> — These Fault input pins are used for disabling selected PWMA outputs in cases where fault conditions originate off-chip.        |
| 6              | PWMB0-5        | Output             | Tri- stated           | PWMB0-5— Six PWMB output pins.                                                                                                                    |
| 3              | ISB0-2         | Input<br>(Schmitt) | Input                 | <b>ISB0-2</b> — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMB. |
| 4              | FAULTB0-3      | Input<br>(Schmitt) | Input                 | <b>FAULTB0-3</b> — These four Fault input pins are used for disabling selected PWMB outputs in cases where fault conditions originate off-chip.   |



## 2.8 Serial Peripheral Interface (SPI) Signals

NM

| No. of<br>Pins | Signal<br>Name | Signal<br>Type   | State During<br>Reset | Signal Description                                                                                                                                                                                                                                             |
|----------------|----------------|------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | MISO           | Input/<br>Output | Input                 | <b>SPI Master In/Slave Out (MISO)</b> —This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.                       |
|                | GPIOE6         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.                                                                                                                                   |
|                |                |                  |                       | After reset, the default state is MISO.                                                                                                                                                                                                                        |
| 1              | MOSI           | Input/<br>Output | Input                 | SPI Master Out/Slave In (MOSI)—This serial data pin is an output from<br>a master device and an input to a slave device. The master device<br>places data on the MOSI line a half-cycle before the clock edge that the<br>slave device uses to latch the data. |
|                | GPIOE5         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.<br>After reset, the default state is MOSI.                                                                                        |
|                | 0011/          | la a st/Ossta    | lanest                |                                                                                                                                                                                                                                                                |
| 1              | SCLK           | Input/Outp<br>ut | Input                 | <b>SPI Serial Clock</b> —In master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.                                                                                                      |
|                | GPIOE4         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.                                                                                                                                   |
|                |                |                  |                       | After reset, the default state is SCLK.                                                                                                                                                                                                                        |
| 1              | SS             | Input            | Input                 | <b>SPI Slave Select</b> —In master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave.                                                                                                                  |
|                | GPIOE7         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.                                                                                                                                   |
|                |                |                  |                       | After reset, the default state is $\overline{SS}$ .                                                                                                                                                                                                            |

Table 2-12 Serial Peripheral Interface (SPI) Signals



## 2.9 Quadrature Decoder Signals

### Table 2-13 Quadrature Decoder (Quad Dec0 and Quad Dec1) Signals

| No. of<br>Pins | Signal<br>Name   | Signal<br>Type   | State During<br>Reset | Signal Description                         |
|----------------|------------------|------------------|-----------------------|--------------------------------------------|
| 1              | PHASEA0          | Input            | Input                 | Phase A—Quadrature Decoder #0 PHASEA input |
|                | TA0              | Input/Output     | Input                 | TA0—Timer A Channel 0                      |
| 1              | PHASEB0          | Input            | Input                 | Phase B—Quadrature Decoder #0 PHASEB input |
|                | TA1              | Input/Output     | Input                 | TA1—Timer A Channel 1                      |
| 1              | INDEX0           | Input            | Input                 | Index—Quadrature Decoder #0 INDEX input    |
|                | TA2              | Input/Output     | Input                 | TA2—Timer A Channel 2                      |
| 1              | HOME0            | Input            | Input                 | Home—Quadrature Decoder #0 HOME input      |
|                | TA3              | TA3 Input/Output |                       | TA3—Timer A Channel 3                      |
| 1              | PHASEA1          | Input            | Input                 | Phase A—Quadrature Decoder #1 PHASEA input |
|                | TB0 Input/Output |                  | Input                 | TB0—Timer B Channel 0                      |
| 1              | PHASEB1          | Input            | Input                 | Phase B—Quadrature Decoder #1 PHASEB input |
|                | TB1 Input/Output |                  | Input                 | TB1—Timer B Channel 1                      |
| 1              | INDEX1 Input     |                  | Input                 | Index—Quadrature Decoder #1 INDEX input    |
|                | TB2 Input/Output |                  | Input                 | TB2—Timer B Channel 2                      |
| 1              | HOME1            | Input            | Input                 | Home—Quadrature Decoder #1 HOME input      |
|                | ТВЗ              | Input/Output     | Input                 | TB3—Timer B Channel 3                      |



## 2.10 Serial Communications Interface (SCI) Signals

| No. of<br>Pins | Signal<br>Name | Signal<br>Type   | State During<br>Reset | Signal Description                                                                                                                                                                                                                                             |
|----------------|----------------|------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | MISO           | Input/<br>Output | Input                 | SPI Master In/Slave Out (MISO)—This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.                               |
|                | GPIOE6         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.                                                                                                                                   |
|                |                |                  |                       | After reset, the default state is MISO.                                                                                                                                                                                                                        |
| 1              | MOSI           | Input/<br>Output | Input                 | SPI Master Out/Slave In (MOSI)—This serial data pin is an output from<br>a master device and an input to a slave device. The master device<br>places data on the MOSI line a half-cycle before the clock edge that the<br>slave device uses to latch the data. |
|                | GPIOE5         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.<br>After reset, the default state is MOSI.                                                                                        |
|                | 00116          |                  |                       |                                                                                                                                                                                                                                                                |
| 1              | SCLK           | Input/Outp<br>ut | Input                 | <b>SPI Serial Clock</b> —In master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.                                                                                                      |
|                | GPIOE4         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.                                                                                                                                   |
|                |                |                  |                       | After reset, the default state is SCLK.                                                                                                                                                                                                                        |
| 1              | SS             | Input            | Input                 | <b>SPI Slave Select</b> —In master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave.                                                                                                                  |
|                | GPIOE7         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.                                                                                                                                   |
|                |                |                  |                       | After reset, the default state is $\overline{SS}$ .                                                                                                                                                                                                            |

Table 2-14 Serial Peripheral Interface (SPI) Signals



| No. of<br>Pins | Signal<br>Name | Signal<br>Type   | State During<br>Reset | Signal Description                                                                                                           |
|----------------|----------------|------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1              | TXD0           | Output           | Input                 | Transmit Data (TXD0)—transmit data output                                                                                    |
|                | GPIOE0         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. |
|                |                |                  |                       | After reset, the default state is SCI output.                                                                                |
| 1              | RXD0           | Input            | Input                 | Receive Data (RXD0)— receive data input                                                                                      |
|                | GPIOE1         | Input/Outp<br>ut | Input                 | <b>Port E GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. |
|                |                |                  |                       | After reset, the default state is SCI input.                                                                                 |
| 1              | TXD1           | Output           | Input                 | Transmit Data (TXD1)—transmit data output                                                                                    |
|                | GPIOD6         | Input/Outp<br>ut | Input                 | <b>Port D GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. |
|                |                |                  |                       | After reset, the default state is SCI output.                                                                                |
| 1              | RXD1           | Input            | Input                 | Receive Data (RXD1)— receive data input                                                                                      |
|                | GPIOD7         | Input/Outp<br>ut | Input                 | <b>Port D GPIO</b> —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. |
|                |                |                  |                       | After reset, the default state is SCI input.                                                                                 |

### Table 2-15 Serial Communications Interface (SCI0 and SCI1) Signals

## 2.11 CAN Signals

#### Table 2-16 CAN Module Signals

| No. of<br>Pins | Signal<br>Name | Signal<br>Type     | State During<br>Reset | Signal Description                                                                                |
|----------------|----------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------|
| 1              | MSCAN_RX       | Input<br>(Schmitt) | Input                 | <b>MSCAN Receive Data</b> —MSCAN input. This pin has an internal pull-up resistor.                |
| 1              | MSCAN_TX       | Output             | Output                | MSCAN Transmit Data—MSCAN output. CAN output is open-drain output and pull-up resistor is needed. |



## 2.12 Analog-to-Digital Converter (ADC) Signals

| No. of<br>Pins | Signal<br>Name | Signal<br>Type | State During<br>Reset | Signal Description                                                                                     |
|----------------|----------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------|
| 4              | ANA0-3         | Input          | Input                 | ANA0-3—Analog inputs to ADCA channel 1                                                                 |
| 4              | ANA4-7         | Input          | Input                 | ANA4-7—Analog inputs to ADCA channel 2                                                                 |
| 2              | VREF           | Input          | Input                 | <b>VREF</b> —Analog reference voltage for ADC. Must be set to $V_{DDA}$ -0.3V for optimal performance. |
| 4              | ANB0-3         | Input          | Input                 | ANB0-3—Analog inputs to ADCB, channel 1                                                                |
| 4              | ANB4-7         | Input          | Input                 | ANB4-7—Analog inputs to ADCB, channel 2                                                                |

### Table 2-17 Analog to Digital Converter Signals

## 2.13 Quad Timer Module Signals

| No. of<br>Pins | Signal<br>Name | Signal Type  | State During<br>Reset | Signal Description                    |
|----------------|----------------|--------------|-----------------------|---------------------------------------|
| 2              | TC0-1          | Input/Output | Input                 | TC0-1—Timer C Channels 0 and 1        |
| 4              | TD0-3          | Input/Output | Input                 | TD0-3—Timer D Channels 0, 1, 2, and 3 |

#### Table 2-18 Quad Timer Module Signals



## 2.14 JTAG/OnCE

| No. of<br>Pins | Signal<br>Name | Signal<br>Type     | State During<br>Reset            | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|----------------|--------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | тск            | Input<br>(Schmitt) | Input, pulled<br>low internally  | <b>Test Clock Input</b> —This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/OnCE port. The pin is connected internally to a pull-down resistor.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1              | TMS            | Input<br>(Schmitt) | Input, pulled<br>high internally | <ul> <li>Test Mode Select Input—This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.</li> <li>Note: Always tie the TMS pin to V<sub>DD</sub> through a 2.2K resistor.</li> </ul>                                                                                                                                                                                                                                                                                                                                             |
| 1              | TDI            | Input<br>(Schmitt) | Input, pulled<br>high internally | <b>Test Data Input</b> —This input pin provides a serial input data stream to the JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1              | TDO            | Output             | Tri-stated                       | <b>Test Data Output</b> —This tri-statable output pin provides a serial output data stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR controller states, and changes on the falling edge of TCK.                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1              | TRST           | Input<br>(Schmitt) | Input, pulled<br>high internally | <b>Test Reset</b> —As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted at power-up and whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and it is necessary not to reset the OnCE/JTAG module. In this case, assert RESET, but do not assert TRST.<br><b>Note:</b> For normal operation, connect TRST directly to V <sub>SS</sub> . If the design is to be used in a debugging environment, TRST may be tied to V <sub>SS</sub> through a 1K resistor. |
| 1              | DE             | Output             | Output                           | <b>Debug Event</b> —DE provides a low pulse on recognized debug events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### Table 2-19 JTAG/On-Chip Emulation (OnCE) Signals

## **Part 3 Specifications**

## 3.1 General Characteristics

The 56F807 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term "5V-tolerant" refers to the capability of an I/O pin, built on a 3.3V compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of  $3.3V \pm 10\%$  during normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings of 3.3V I/O levels while being able to receive 5V levels without being damaged.

Absolute maximum ratings given in **Table 3-1** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent





damage to the device.

The 56F807 DC/AC electrical specifications are preliminary and are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after complete characterization and device qualifications have been completed.

#### CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

| Characteristic                                                                                                                 | Symbol          | Min                   | Max                    | Unit |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|------------------------|------|
| Supply voltage                                                                                                                 | V <sub>DD</sub> | V <sub>SS</sub> – 0.3 | V <sub>SS</sub> + 4.0  | V    |
| All other input voltages, excluding Analog inputs                                                                              | V <sub>IN</sub> | V <sub>SS</sub> – 0.3 | V <sub>SS</sub> + 5.5V | V    |
| Voltage difference $V_{DD}$ to $V_{DDA}$                                                                                       | $\Delta V_{DD}$ | - 0.3                 | 0.3                    | V    |
| Voltage difference $V_{SS}$ to $V_{SSA}$                                                                                       | $\Delta V_{SS}$ | - 0.3                 | 0.3                    | V    |
| Analog inputs, ANA0-7 and VREF                                                                                                 | V <sub>IN</sub> | V <sub>SSA</sub> -0.3 | V <sub>DDA</sub> + 0.3 | V    |
| Analog inputs EXTAL and XTAL                                                                                                   | V <sub>IN</sub> | V <sub>SSA</sub> -0.3 | V <sub>SSA</sub> + 3.0 | V    |
| Current drain per pin excluding V <sub>DD</sub> , V <sub>SS</sub> , PWM outputs, TCS, VPP, V <sub>DDA</sub> , V <sub>SSA</sub> | I               | _                     | 10                     | mA   |

#### Table 3-1 Absolute Maximum Ratings

| <b>Table 3-2 Recommended</b> | Operating | Conditions |
|------------------------------|-----------|------------|
|------------------------------|-----------|------------|

| Characteristic                           | Symbol           | Min  | Тур | Max | Unit |
|------------------------------------------|------------------|------|-----|-----|------|
| Supply voltage, digital                  | V <sub>DD</sub>  | 3.0  | 3.3 | 3.6 | V    |
| Supply Voltage, analog                   | V <sub>DDA</sub> | 3.0  | 3.3 | 3.6 | V    |
| Voltage difference $V_{DD}$ to $V_{DDA}$ | $\Delta V_{DD}$  | -0.1 | -   | 0.1 | V    |



| Characteristic                           | Symbol          | Min  | Тур | Мах              | Unit |
|------------------------------------------|-----------------|------|-----|------------------|------|
| Voltage difference $V_{SS}$ to $V_{SSA}$ | $\Delta V_{SS}$ | -0.1 | -   | 0.1              | V    |
| ADC reference voltage                    | VREF            | 2.7  | -   | V <sub>DDA</sub> | V    |
| Ambient operating temperature            | Τ <sub>Α</sub>  | -40  | -   | 85               | °C   |

**Table 3-2 Recommended Operating Conditions** 

|                                           |                            |                             | Va                                         | alue        |      |       |  |
|-------------------------------------------|----------------------------|-----------------------------|--------------------------------------------|-------------|------|-------|--|
| Characteristic                            | Comments                   | Symbol                      | 160-pin<br>LQFP                            | 160<br>MBGA | Unit | Notes |  |
| Junction to ambient<br>Natural convection |                            | R <sub>θJA</sub>            | 38.5                                       | 63.4        | °C/W | 2     |  |
| Junction to ambient (@1m/sec)             |                            | R <sub>θJMA</sub>           | 35.4                                       | 60.3        | °C/W | 2     |  |
| Junction to ambient<br>Natural convection | Four layer<br>board (2s2p) | R <sub>θJMA</sub><br>(2s2p) | 33                                         | 49.9        | °C/W | 1,2   |  |
| Junction to ambient (@1m/sec)             | Four layer<br>board (2s2p) | R <sub>θJMA</sub>           | 31.5                                       | 46.8        | °C/W | 1,2   |  |
| Junction to case                          |                            | $R_{	ext{	heta}JC}$         | 8.6                                        | 8.1         | °C/W | 3     |  |
| Junction to center of case                |                            | $\Psi_{JT}$                 | 0.8                                        | 0.6         | °C/W | 4, 5  |  |
| I/O pin power dissipation                 |                            | P <sub>I/O</sub>            | User Determined                            |             | W    |       |  |
| Power dissipation                         |                            | Ρ <sub>D</sub>              | $P_{D} = (I_{DD} \times V_{DD} + P_{I/O})$ |             | W    |       |  |
| Junction to center of case                |                            | P <sub>DMAX</sub>           | (TJ - TA) /RθJA                            |             | W    | 7     |  |

### Table 3-3 Thermal Characteristics<sup>6</sup>

#### Notes:

- 1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p thermal test board.
- 2. Junction to ambient thermal resistance, Theta-JA ( $R_{\theta JA}$ ) was simulated to be equivalent to the JEDEC specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes (2s2p where "s" is the number of signal layers and "p" is the number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.
- 3. Junction to case thermal resistance, Theta-JC ( $R_{\theta JC}$ ), was simulated to be equivalent to the measured values using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package is being used with a heat sink.



- 4. Thermal Characterization Parameter, Psi-JT ( $\Psi_{JT}$ ), is the "resistance" from junction to reference point thermocouple on top center of case as defined in JESD51-2.  $\Psi_{JT}$  is a useful value to use to estimate junction temperature in steady state customer environments.
- 5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 6. See Section 5.1 from more details on thermal design considerations.
- 7. TJ = Junction Temperature TA = Ambient Temperature

### 3.2 DC Electrical Characteristics

#### **Table 3-4 DC Electrical Characteristics**

Operating Conditions:  $V_{SS} = V_{SSA} = 0$  V,  $V_{DD} = V_{DDA} = 3.0-3.6$  V,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C,  $C_L \le 50$  pF,  $f_{op} = 80$  MHz

|                                                                                            |                                   |                       | -   |      |      |
|--------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|-----|------|------|
| Characteristic                                                                             | Symbol                            | Min                   | Тур | Мах  | Unit |
| Input high voltage (XTAL/EXTAL)                                                            | V <sub>IHC</sub>                  | 2.25                  | _   | 2.75 | V    |
| Input low voltage (XTAL/EXTAL)                                                             | V <sub>ILC</sub>                  | 0                     |     | 0.5  | V    |
| Input high voltage (Schmitt trigger inputs) <sup>1</sup>                                   | V <sub>IHS</sub>                  | 2.2                   | _   | 5.5  | V    |
| Input low voltage (Schmitt trigger inputs) <sup>1</sup>                                    | V <sub>ILS</sub>                  | -0.3                  | _   | 0.8  | V    |
| Input high voltage (all other digital inputs)                                              | V <sub>IH</sub>                   | 2.0                   |     | 5.5  | V    |
| Input low voltage (all other digital inputs)                                               | V <sub>IL</sub>                   | -0.3                  |     | 0.8  | V    |
| Input current high (pullup/pulldown resistors disabled, $V_{\text{IN}} {=} V_{\text{DD}})$ | I <sub>IH</sub>                   | -1                    | _   | 1    | μΑ   |
| Input current low (pullup/pulldown resistors disabled, $\mathrm{V_{IN}=V_{SS}}$ )          | IIL                               | -1                    | _   | 1    | μΑ   |
| Input current high (with pullup resistor, $V_{IN}=V_{DD}$ )                                | I <sub>IHPU</sub>                 | -1                    | _   | 1    | μΑ   |
| Input current low (with pullup resistor, $V_{IN}=V_{SS}$ )                                 | I <sub>ILPU</sub>                 | -210                  |     | -50  | μΑ   |
| Input current high (with pulldown resistor, $V_{IN}=V_{DD}$ )                              | I <sub>IHPD</sub>                 | 20                    | _   | 180  | μΑ   |
| Input current low (with pulldown resistor, $V_{IN}=V_{SS}$ )                               | I <sub>ILPD</sub>                 | -1                    |     | 1    | μΑ   |
| Nominal pullup or pulldown resistor value                                                  | R <sub>PU</sub> , R <sub>PD</sub> |                       | 30  |      | KΩ   |
| Output tri-state current low                                                               | I <sub>OZL</sub>                  | -10                   | _   | 10   | μΑ   |
| Output tri-state current high                                                              | I <sub>OZH</sub>                  | -10                   |     | 10   | μΑ   |
| Input current high (analog inputs, $V_{IN}=V_{DDA}$ ) <sup>2</sup>                         | I <sub>IHA</sub>                  | -15                   | -   | 15   | μΑ   |
| Input current low (analog inputs, $V_{IN}=V_{SSA}$ ) <sup>3</sup>                          | I <sub>ILA</sub>                  | -15                   |     | 15   | μΑ   |
| Output High Voltage (at IOH)                                                               | V <sub>OH</sub>                   | V <sub>DD</sub> - 0.7 | —   | —    | V    |



#### Table 3-4 DC Electrical Characteristics (Continued)

Operating Conditions:  $V_{SS} = V_{SSA} = 0 V$ ,  $V_{DD} = V_{DDA} = 3.0-3.6 V$ ,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C,  $C_L \le 50$  pF,  $f_{op} = 80$  MHz

| Characteristic                                            | Symbol                        | Min | Тур | Max | Unit |
|-----------------------------------------------------------|-------------------------------|-----|-----|-----|------|
| Output Low Voltage (at IOL)                               | V <sub>OL</sub>               | —   | -   | 0.4 | V    |
| Output source current                                     | I <sub>ОН</sub>               | 4   | —   |     | mA   |
| Output source current                                     | I <sub>OL</sub>               | 4   | —   | _   | mA   |
| PWM pin output source current <sup>3</sup>                | I <sub>OHP</sub>              | 10  | —   | _   | mA   |
| PWM pin output sink current <sup>4</sup>                  | I <sub>OLP</sub>              | 16  | —   | _   | mA   |
| Input capacitance                                         | C <sub>IN</sub>               | —   | 8   |     | pF   |
| Output capacitance                                        | C <sub>OUT</sub>              | —   | 12  | _   | pF   |
| V <sub>DD</sub> supply current                            | I <sub>DDT</sub> <sup>5</sup> |     |     |     |      |
| Run <sup>6</sup>                                          |                               | —   | 195 | 220 | mA   |
| Wait <sup>7</sup>                                         |                               | _   | 170 | 200 | mA   |
| Stop                                                      |                               | _   | 115 | 145 | mA   |
| Low Voltage Interrupt, external power supply <sup>8</sup> | V <sub>EIO</sub>              | 2.4 | 2.7 | 3.0 | V    |
| Low Voltage Interrupt, internal power supply <sup>9</sup> | V <sub>EIC</sub>              | 2.0 | 2.2 | 2.4 | V    |
| Power on Reset <sup>10</sup>                              | V <sub>POR</sub>              | -   | 1.7 | 2.0 | V    |

1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, TCS, ISA0-2, FAULTA0-3, ISB0-2, FAULTB0-3, TCK, TRST, TMS, TDI, and MSCAN\_RX

2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.

3. PWM pin output source current measured with 50% duty cycle.

4. PWM pin output sink current measured with 50% duty cycle.

5.  $I_{DDT} = I_{DD} + I_{DDA}$  (Total supply current for  $V_{DD} + V_{DDA}$ )

6. Run (operating) I<sub>DD</sub> measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured as inputs; measured with all modules enabled.

7. Wait I<sub>DD</sub> measured using external square wave clock source ( $f_{osc} = 8MHz$ ) into XTAL; all inputs 0.2V from rail; no DC loads; less than 50pF on all outputs. C<sub>L</sub> = 20pF on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects wait I<sub>DD</sub>; measured with PLL enabled.

8. This low voltage interrupt monitors the V<sub>DDA</sub> external power supply. V<sub>DDA</sub> is generally connected to the same potential as V<sub>DD</sub> via separate traces. If V<sub>DDA</sub> drops below V<sub>EIO</sub>, an interrupt is generated. Functionality of the device is guaranteed under transient conditions when V<sub>DDA</sub> $\geq$ V<sub>EIO</sub> (between the minimum specified V<sub>DD</sub> and the point when the V<sub>EIO</sub> interrupt is generated).

9. This low voltage interrupt monitors the internally regulated core power supply. If the output from the internal voltage is regulator drops below V<sub>EIC</sub>, an interrupt is generated. Since the core logic supply is internally regulated, this interrupt will not be generated unless the external power supply drops below the minimum specified value (3.0V).

10. Power—on reset occurs whenever the internally regulated 2.5V digital supply drops below 1.5V typical. While power is ramping up, this signal remains active as long as the internal 2.5V is below 1.5V typical, no matter how long the ramp-up rate is. The internally regulated voltage is typically 100mV less than V<sub>DD</sub> during ramp-up until 2.5V is reached, at which time it self-regulates.

AC Electrical Characteristics



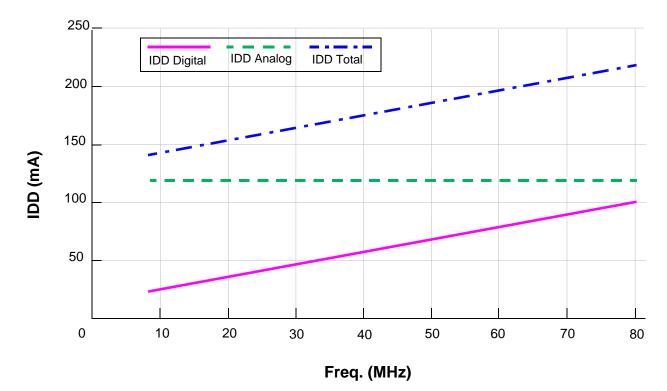
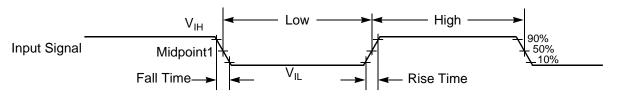




Figure 3-1 Maximum Run IDD vs. Frequency (see Note 6. in Table 3-14)

### 3.3 AC Electrical Characteristics

Timing waveforms in Section 3.3 are tested using the  $V_{IL}$  and  $V_{IH}$  levels specified in the DC Characteristics table. In Figure 3-2 the levels of  $V_{IH}$  and  $V_{IL}$  for an input signal are shown.



Note: The midpoint is  $V_{IL} + (V_{IH} - V_{IL})/2$ .

#### Figure 3-2 Input Signal Measurement References

Figure 3-3 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached  $V_{OL}$  or  $V_{OH}$
- Data Invalid state, when a signal level is in transition between  $V_{OL}$  and  $V_{OH}$

56F807 Technical Data Technical Data, Rev. 16



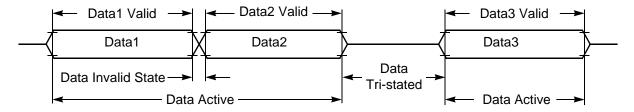



Figure 3-3 Signal States

| Mode         | XE <sup>1</sup> | YE <sup>2</sup> | SE <sup>3</sup> | OE <sup>4</sup> | PROG <sup>5</sup> | ERASE <sup>6</sup> | MAS1 <sup>7</sup> | NVSTR <sup>8</sup> |
|--------------|-----------------|-----------------|-----------------|-----------------|-------------------|--------------------|-------------------|--------------------|
| Standby      | L               | L               | L               | L               | L                 | L                  | L                 | L                  |
| Read         | Н               | Н               | Н               | Н               | L                 | L                  | L                 | L                  |
| Word Program | Н               | Н               | L               | L               | Н                 | L                  | L                 | Н                  |
| Page Erase   | Н               | L               | L               | L               | L                 | Н                  | L                 | Н                  |
| Mass Erase   | Н               | L               | L               | L               | L                 | Н                  | Н                 | Н                  |

- 1. X address enable, all rows are disabled when XE=0
- 2. Y address enable, YMUX is disabled when YE=0
- 3. Sense amplifier enable
- 4. Output enable, tri-state Flash data out bus when OE=0
- 5. Defines program cycle
- 6. Defines erase cycle
- 7. Defines mass erase cycle, erase whole block
- 8. Defines non-volatile store cycle

#### **Table 3-6 IFREN Truth Table**

| Mode         | IFREN=1                   | IFREN=0                   |
|--------------|---------------------------|---------------------------|
| Read         | Read information block    | Read main memory block    |
| Word program | Program information block | Program main memory block |
| Page erase   | Erase information block   | Erase main memory block   |
| Mass erase   | Erase both block          | Erase main memory block   |



#### **Table 3-7 Flash Timing Parameters**

Operating Conditions:  $V_{SS} = V_{SSA} = 0 V$ ,  $V_{DD} = V_{DDA} = 3.0-3.6V$ ,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C,  $C_L \le 50$  pF

| Characteristic              | Symbol           | Min    | Тур    | Max | Unit   | Figure     |
|-----------------------------|------------------|--------|--------|-----|--------|------------|
| Program time                | Tprog*           | 20     | -      | _   | us     | Figure 3-4 |
| Erase time                  | Terase*          | 20     | _      | _   | ms     | Figure 3-5 |
| Mass erase time             | Tme*             | 100    | -      | _   | ms     | Figure 3-6 |
| Endurance <sup>1</sup>      | E <sub>CYC</sub> | 10,000 | 20,000 | _   | cycles |            |
| Data Retention <sup>1</sup> | D <sub>RET</sub> | 10     | 30     | _   | years  |            |

The following parameters should only be used in the Manual Word Programming Mode

| ÷ ·                                          |        | • |     |   |    | -                                        |
|----------------------------------------------|--------|---|-----|---|----|------------------------------------------|
| PROG/ERASE to NVSTR set up time              | Tnvs*  | - | 5   | - | us | Figure 3-4,<br>Figure 3-5,<br>Figure 3-6 |
| NVSTR hold time                              | Tnvh*  | _ | 5   | _ | us | Figure 3-4,<br>Figure 3-5                |
| NVSTR hold time (mass erase)                 | Tnvh1* | - | 100 | - | us | Figure 3-6                               |
| NVSTR to program set up time                 | Tpgs*  | _ | 10  | _ | us | Figure 3-4                               |
| Recovery time                                | Trcv*  | - | 1   | - | us | Figure 3-4,<br>Figure 3-5,<br>Figure 3-6 |
| Cumulative program<br>HV period <sup>2</sup> | Thv    | _ | 3   | _ | ms | Figure 3-4                               |
| Program hold time <sup>3</sup>               | Tpgh   | _ | _   | _ |    | Figure 3-4                               |
| Address/data set up time <sup>3</sup>        | Tads   | - | -   | - |    | Figure 3-4                               |
| Address/data hold time <sup>3</sup>          | Tadh   | _ | _   | _ |    | Figure 3-4                               |

1. One cycle is equal to an erase program and read.

2. Thy is the cumulative high voltage programming time to the same row before next erase. The same address cannot be programmed twice before next erase.

3. Parameters are guaranteed by design in smart programming mode and must be one cycle or greater.

\*The Flash interface unit provides registers for the control of these parameters.



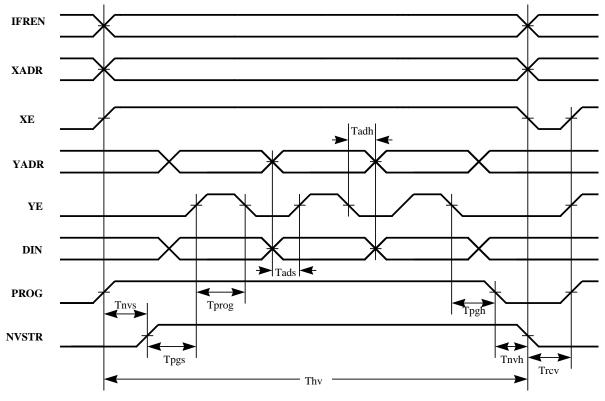



Figure 3-4 Flash Program Cycle

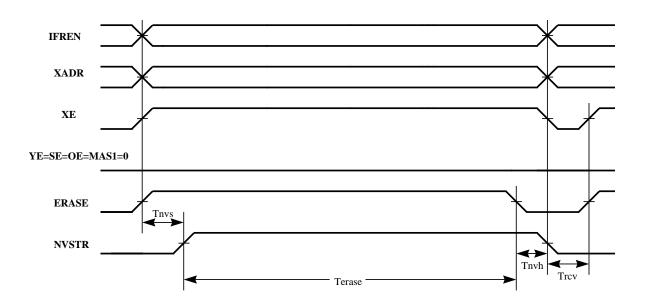



Figure 3-5 Flash Erase Cycle

56F807 Technical Data Technical Data, Rev. 16



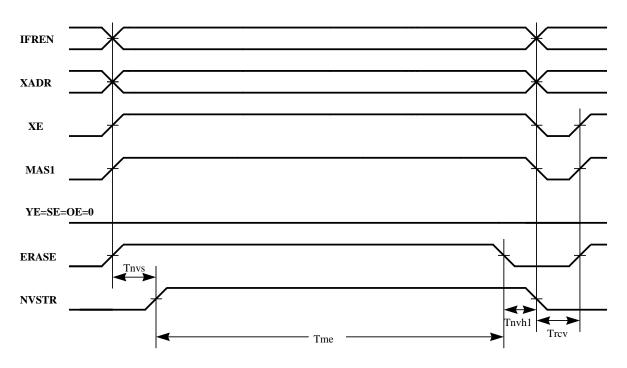



Figure 3-6 Flash Mass Erase Cycle

### 3.4 External Clock Operation

The 56F807 system clock can be derived from an external crystal or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal must be connected between the EXTAL and XTAL pins.

### 3.4.1 Crystal Oscillator

The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 3-9**. In **Figure 3-7** a recommended crystal oscillator circuit is shown. Follow the crystal supplier's recommendations when selecting a crystal, since crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time. The internal 56F80x oscillator circuitry is designed to have no external load capacitors present. As shown in **Figure 3-8** no external load capacitors should be used.

The 56F80x components internally are modeled as a parallel resonant oscillator circuit to provide a capacitive load on each of the oscillator pins (XTAL and EXTAL) of 10pF to 13pF over temperature and process variations. Using a typical value of internal capacitance on these pins of 12pF and a value of 3pF



as a typical circuit board trace capacitance the parallel load capacitance presented to the crystal is 9pF as determined by the following equation:

$$CL = \frac{CL1 * CL2}{CL1 + CL2} + Cs = \frac{12 * 12}{12 + 12} + 3 = 6 + 3 = 9pF$$

This is the value load capacitance that should be used when selecting a crystal and determining the actual frequency of operation of the crystal oscillator circuit.

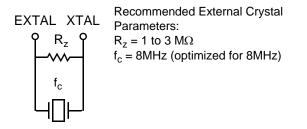
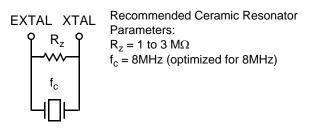
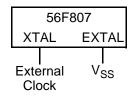



Figure 3-7 Connecting to a Crystal Oscillator

### 3.4.2 Ceramic Resonator

It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system design can tolerate the reduced signal integrity. In **Figure 3-8**, a typical ceramic resonator circuit is shown. Refer to supplier's recommendations when selecting a ceramic resonator and associated components. The resonator and components should be mounted as close as possible to the EXTAL and XTAL pins. The internal 56F80x oscillator circuitry is designed to have no external load capacitors present. As shown in **Figure 3-7** no external load capacitors should be used.





Figure 3-8 Connecting a Ceramic Resonator

**Note:** Freescale recommends only two terminal ceramic resonators vs. three terminal resonators (which contain an internal bypass capacitor to ground).



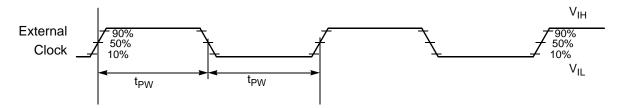
### 3.4.3 External Clock Source

The recommended method of connecting an external clock is given in **Figure 3-9**. The external clock source is connected to XTAL and the EXTAL pin is grounded.



#### Figure 3-9 Connecting an External Clock Signal

### Table 3-8 External Clock Operation Timing Requirements<sup>5</sup>


Operating Conditions:  $V_{SS} = V_{SSA} = 0$  V,  $V_{DD} = V_{DDA} = 3.0-3.6$  V,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C

| Characteristic                                              | Symbol           | Min  | Тур | Max | Unit |
|-------------------------------------------------------------|------------------|------|-----|-----|------|
| Frequency of operation (external clock driver) <sup>1</sup> | f <sub>osc</sub> | 0    | —   | 80  | MHz  |
| Clock Pulse Width <sup>2</sup> , <sup>3</sup>               | t <sub>PW</sub>  | 6.25 | —   |     | ns   |

1. See Figure 3-9 for details on using the recommended connection of an external clock driver.

2. The high or low pulse width must be no smaller than 6.25ns or the chip will not function. However, the high pulse width does not have to be any particular percent of the low pulse width.

3. Parameters listed are guaranteed by design.



Note: The midpoint is  $V_{IL} + (V_{IH} - V_{IL})/2$ .

#### Figure 3-10 External Clock Timing



### 3.4.4 Phase Locked Loop Timing

#### **Table 3-9 PLL Timing**

Operating Conditions:  $V_{SS} = V_{SSA} = 0$  V,  $V_{DD} = V_{DDA} = 3.0-3.6$  V,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C

| Characteristic                                                           | Symbol              | Min | Тур | Мах | Unit |
|--------------------------------------------------------------------------|---------------------|-----|-----|-----|------|
| External reference crystal frequency for the PLL <sup>1</sup>            | f <sub>osc</sub>    | 4   | 8   | 10  | MHz  |
| PLL output frequency <sup>2</sup>                                        | f <sub>out</sub> /2 | 40  | _   | 110 | MHz  |
| PLL stabilization time <sup>3</sup> 0° to +85°C                          | t <sub>plls</sub>   | _   | 1   | 10  | ms   |
| PLL stabilization time <sup>3</sup> -40 <sup>o</sup> to 0 <sup>o</sup> C | t <sub>plls</sub>   | _   | 100 | 200 | ms   |

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8MHz input crystal.2.

2. ZCLK may not exceed 80MHz. For additional information on ZCLK and  $f_{out}/2$ , please refer to the OCCS chapter in the User Manual. ZCLK =  $f_{op}$ 

3. This is the minimum time required after the PLL set-up is changed to ensure reliable operation.

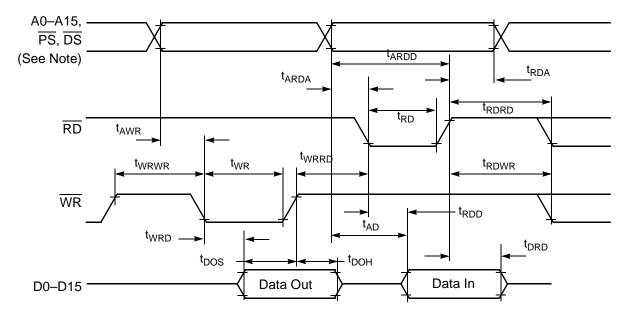


## 3.5 External Bus Asynchronous Timing

 $\label{eq:constraint} \begin{array}{c} \textbf{Table 3-10 External Bus Asynchronous Timing^{1,2}} \\ Operating Conditions: \ v_{SS} = v_{SSA} = 0 \ v, \ v_{DD} = v_{DDA} = 3.0 - 3.6 \ v, \ T_A = -40^\circ \ \text{to} \ +85^\circ \text{C}, \ C_L \leq 50 \text{pF}, \ f_{op} = 80 \text{MHz} \end{array}$ 

| Characteristic                                                                           | Characteristic Symbol Min |                       | Мах                 | Unit     |  |
|------------------------------------------------------------------------------------------|---------------------------|-----------------------|---------------------|----------|--|
| Address Valid to WR Asserted                                                             | t <sub>AWR</sub>          | 6.5                   | _                   | ns       |  |
| WR Width Asserted<br>Wait states = 0<br>Wait states > 0                                  | t <sub>WR</sub>           | 7.5<br>(T*WS)+7.5     |                     | ns<br>ns |  |
| WR Asserted to D0–D15 Out Valid                                                          | t <sub>WRD</sub>          | _                     | T + 4.2             | ns       |  |
| Data Out Hold Time from $\overline{\mathrm{WR}}$ Deasserted                              | t <sub>DOH</sub>          | 4.8                   | _                   | ns       |  |
| Data Out Set Up Time to $\overline{WR}$ Deasserted<br>Wait states = 0<br>Wait states > 0 | t <sub>DOS</sub>          | 2.2<br>(T*WS)+6.4     |                     | ns<br>ns |  |
| RD Deasserted to Address Not Valid                                                       | t <sub>RDA</sub>          | 0                     | _                   | ns       |  |
| Address Valid to $\overline{RD}$ Deasserted<br>Wait states = 0<br>Wait states > 0        | t <sub>ARDD</sub>         | 18.7<br>(T*WS) + 18.7 | -                   | ns<br>ns |  |
| Input Data Hold to RD Deasserted                                                         | t <sub>DRD</sub>          | 0                     | _                   | ns       |  |
| RDAssertion WidthWait states = 0Wait states > 0                                          | t <sub>RD</sub>           | 19<br>(T*WS)+19       |                     | ns<br>ns |  |
| Address Valid to Input Data Valid<br>Wait states = 0<br>Wait states > 0                  | t <sub>AD</sub>           | =                     | 1<br>(T*WS)+1       | ns<br>ns |  |
| Address Valid to RD Asserted                                                             | t <sub>ARDA</sub>         | -4.4                  | _                   | ns       |  |
| RD Asserted to Input Data Valid<br>Wait states = 0<br>Wait states > 0                    | t <sub>RDD</sub>          | _                     | 2.4<br>(T*WS) + 2.4 | ns<br>ns |  |
| WR Deasserted to RD Asserted                                                             | t <sub>WRRD</sub>         | 6.8                   | _                   | ns       |  |
| RD Deasserted to RD Asserted                                                             | t <sub>RDRD</sub>         | 0                     | _                   | ns       |  |
| WR Deasserted to WR Asserted                                                             | t <sub>WRWR</sub>         | 14.1                  | _                   | ns       |  |
| RD Deasserted to WR Asserted                                                             | t <sub>RDWR</sub>         | 12.8                  | _                   | ns       |  |




- 1. Timing is both wait state and frequency dependent. In the formulas listed, WS = the number of wait states and
- T = Clock Period. For 80MHz operation, T = 12.5ns.
- 2. Parameters listed are guaranteed by design.

To calculate the required access time for an external memory for any frequency < 80MHz, use this formula:

Top = Clock period @ desired operating frequency

WS = Number of wait states

Memory Access Time = (Top\*WS) + (Top- 11.5)



Note: During read-modify-write instructions and internal instructions, the address lines do not change state.

Figure 3-11 External Bus Asynchronous Timing



### 3.6 Reset, Stop, Wait, Mode Select, and Interrupt Timing

### Table 3-11 Reset, Stop, Wait, Mode Select, and Interrupt Timing<sup>1,5</sup>

Operating Conditions:  $V_{SS} = V_{SSA} = 0$  V,  $V_{DD} = V_{DDA} = 3.0-3.6$  V,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C,  $C_L \le 50$  pF

| Characteristic                                                                                                                                                                   | Symbol           | Min              | Мах             | Unit     | See Figure |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------------|----------|------------|
| RESET Assertion to Address, Data and Control Signals<br>High Impedance                                                                                                           | t <sub>RAZ</sub> | _                | 21              | ns       | 3-12       |
| Minimum RESET Assertion Duration <sup>2</sup><br>OMR Bit 6 = 0<br>OMR Bit 6 = 1                                                                                                  | t <sub>RA</sub>  | 275,000T<br>128T |                 | ns<br>ns | 3-12       |
| RESET Deassertion to First External Address Output                                                                                                                               | t <sub>RDA</sub> | 33T              | 34T             | ns       | 3-12       |
| Edge-sensitive Interrupt Request Width                                                                                                                                           | t <sub>IRW</sub> | 1.5T             | —               | ns       | 3-13       |
| IRQA, IRQB Assertion to External Data Memory Access<br>Out Valid, caused by first instruction execution in the<br>interrupt service routine                                      | t <sub>IDM</sub> | 15T              |                 | ns       | 3-14       |
| IRQA, IRQB Assertion to General Purpose Output Valid,<br>caused by first instruction execution in the interrupt<br>service routine                                               | t <sub>IG</sub>  | 16T              | _               | ns       | 3-14       |
| IRQA Low to First Valid Interrupt Vector Address Out recovery from Wait State <sup>3</sup>                                                                                       | t <sub>IRI</sub> | 13T              |                 | ns       | 3-15       |
| IRQA Width Assertion to Recover from Stop State <sup>4</sup>                                                                                                                     | t <sub>IW</sub>  | 2T               | —               | ns       | 3-16       |
| Delay from IRQA Assertion to Fetch of first instruction<br>(exiting Stop)<br>OMR Bit 6 = 0<br>OMR Bit 6 = 1                                                                      | tıF              |                  | 275,000T<br>12T | ns<br>ns | 3-16       |
| Duration for Level Sensitive $\overline{IRQA}$ Assertion to Cause<br>the Fetch of First $\overline{IRQA}$ Interrupt Instruction (exiting Stop)<br>OMR Bit 6 = 0<br>OMR Bit 6 = 1 | t <sub>IRQ</sub> |                  | 275,000T<br>12T | ns<br>ns | 3-17       |
| Delay from Level Sensitive IRQA Assertion to First<br>Interrupt Vector Address Out Valid (exiting Stop)<br>OMR Bit $6 = 0$<br>OMR Bit $6 = 1$                                    | t <sub>II</sub>  |                  | 275,000T<br>12T | ns<br>ns | 3-17       |

1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5ns.

Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two cases:
 After power-on reset

When recovering from Stop state

3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not the minimum required so that the IRQA interrupt is accepted.

4. The interrupt instruction fetch is visible on the pins only in Mode 3.

5. Parameters listed are guaranteed by design.

56F807 Technical Data Technical Data, Rev. 16



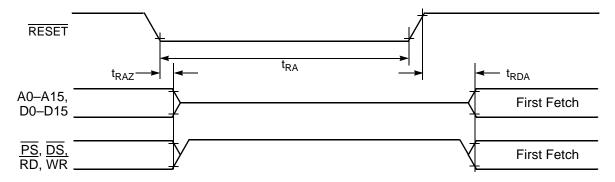



Figure 3-12 Asynchronous Reset Timing



Figure 3-13 External Interrupt Timing (Negative-Edge-Sensitive)

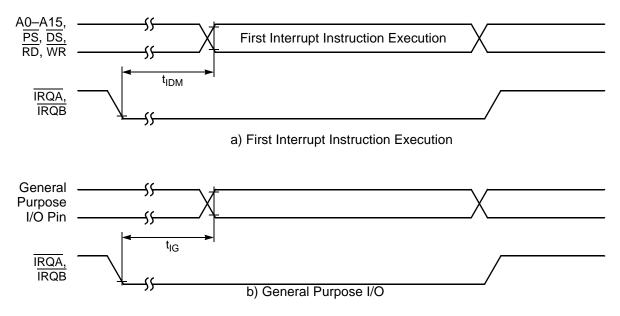
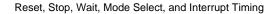




Figure 3-14 External Level-Sensitive Interrupt Timing





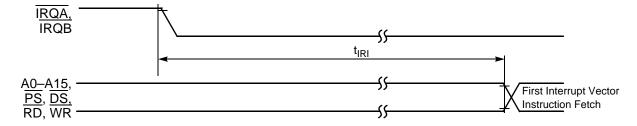



Figure 3-15 Interrupt from Wait State Timing

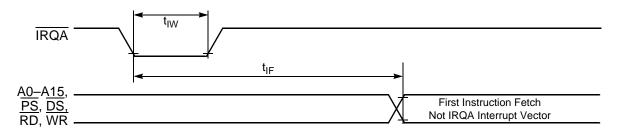



Figure 3-16 Recovery from Stop State Using Asynchronous Interrupt Timing

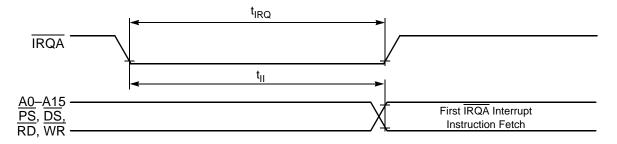



Figure 3-17 Recovery from Stop State Using IRQA Interrupt Service

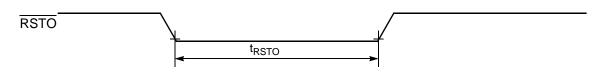
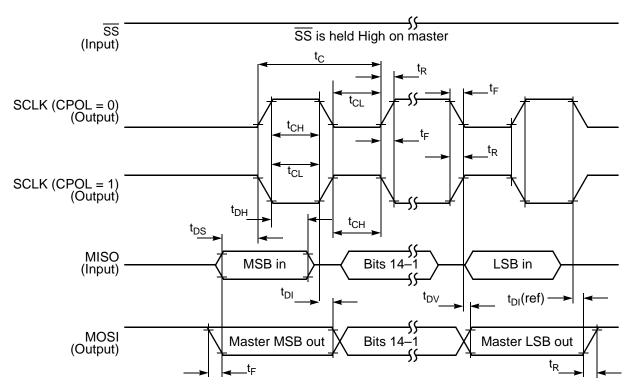
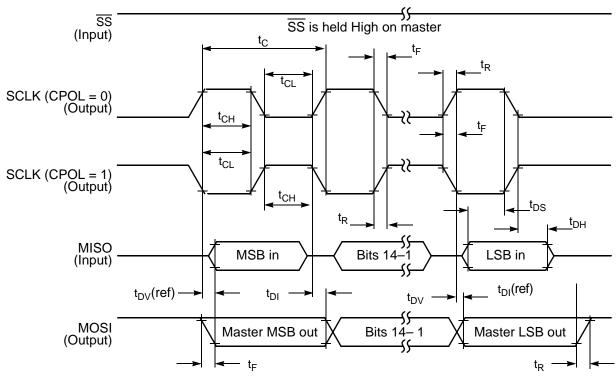



Figure 3-18 Reset Output Timing



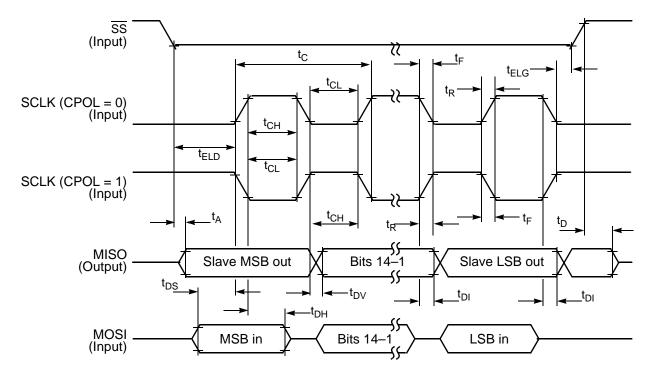

# 3.7 Serial Peripheral Interface (SPI) Timing

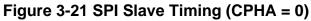
 $\label{eq:conditions} \begin{array}{c} \textbf{Table 3-12 SPI Timing^1} \\ \textbf{Operating Conditions: } V_{SS} = V_{SSA} = 0 \ \text{V}, \ V_{DD} = V_{DDA} = 3.0 - 3.6 \ \text{V}, \ T_A = -40^\circ \ \text{to} \ +85^\circ \text{C}, \ C_L \leq 50 \text{pF}, \ f_{OP} = 80 \text{MHz} \end{array}$ 


| Characteristic                                                          | Symbol           | Min          | Max          | Unit     | See Figure                |
|-------------------------------------------------------------------------|------------------|--------------|--------------|----------|---------------------------|
| Cycle time<br>Master<br>Slave                                           | t <sub>C</sub>   | 50<br>25     |              | ns<br>ns | 3-19-3-22                 |
| Enable lead time<br>Master<br>Slave                                     | t <sub>ELD</sub> | <br>25       |              | ns<br>ns | 3-22                      |
| Enable lag time<br>Master<br>Slave                                      | t <sub>ELG</sub> | <br>100      |              | ns<br>ns | 3-22                      |
| Clock (SCK) high time<br>Master<br>Slave                                | t <sub>CH</sub>  | 17.6<br>12.5 |              | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |
| Clock (SCK) low time<br>Master<br>Slave                                 | t <sub>CL</sub>  | 24.1<br>25   | _            | ns<br>ns | 3-22                      |
| Data set-up time required for inputs<br>Master<br>Slave                 | t <sub>DS</sub>  | 20<br>0      |              | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |
| Data hold time required for inputs<br>Master<br>Slave                   | t <sub>DH</sub>  | 0<br>2       |              | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |
| Access time (time to data active from<br>high-impedance state)<br>Slave | t <sub>A</sub>   | 4.8          | 15           | ns       | 3-22                      |
| Disable time (hold time to high-impedance state)<br>Slave               | t <sub>D</sub>   | 3.7          | 15.2         | ns       | 3-22                      |
| Data Valid for outputs<br>Master<br>Slave (after enable edge)           | t <sub>DV</sub>  |              | 4.5<br>20.4  | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |
| Data invalid<br>Master<br>Slave                                         | t <sub>DI</sub>  | 0<br>0       |              | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |
| Rise time<br>Master<br>Slave                                            | t <sub>R</sub>   | _            | 11.5<br>10.0 | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |
| Fall time<br>Master<br>Slave                                            | t <sub>F</sub>   |              | 9.7<br>9.0   | ns<br>ns | 3-19, 3-20, 3-21,<br>3-22 |

1. Parameters listed are guaranteed by design.















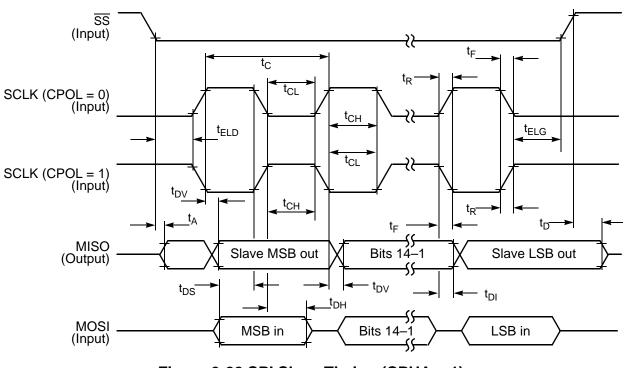
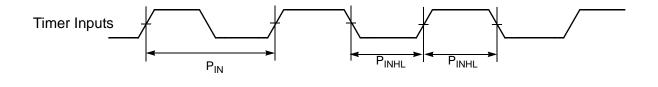




Figure 3-22 SPI Slave Timing (CPHA = 1)




# 3.8 Quad Timer Timing

 $\label{eq:conditions} \begin{array}{c} \textbf{Table 3-13 \ Timer \ Timing^{1, \ 2}} \\ Operating \ Conditions: \ V_{SS} = V_{SSA} = 0 \ V, \ V_{DD} = V_{DDA} = 3.0 - 3.6 \ V, \ T_A = -40^\circ \ to \ +85^\circ C, \ C_L \leq 50 pF, \ f_{OP} = 80 MHz \end{array}$ 

| Characteristic               | Symbol             | Min    | Мах | Unit |
|------------------------------|--------------------|--------|-----|------|
| Timer input period           | P <sub>IN</sub>    | 4T + 6 | _   | ns   |
| Timer input high/low period  | P <sub>INHL</sub>  | 2T + 3 | _   | ns   |
| Timer output period          | P <sub>OUT</sub>   | 2T     | _   | ns   |
| Timer output high/low period | P <sub>OUTHL</sub> | 1T     | —   | ns   |

In the formulas listed, T = the clock cycle. For 80MHz operation, T = 12.5ns. 1.

2. Parameters listed are guaranteed by design.



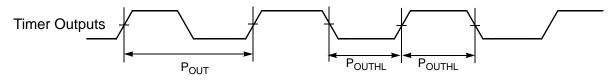



Figure 3-23 Timer Timing



# 3.9 Quadrature Decoder Timing

 $\label{eq:conditions} \begin{array}{c} \textbf{Table 3-14 Quadrature Decoder Timing^{1, \ 2}} \\ Operating Conditions: \ V_{SS} = V_{SSA} = 0 \ V, \ V_{DD} = V_{DDA} = 3.0 - 3.6 \ V, \ T_A = -40^\circ \ \text{to} \ +85^\circ \text{C}, \ C_L \leq 50 \text{pF}, \ f_{OP} = 80 \text{MHz} \end{array}$ 

| Characteristic                   | Symbol          | Min     | Мах | Unit |
|----------------------------------|-----------------|---------|-----|------|
| Quadrature input period          | P <sub>IN</sub> | 8T + 12 | _   | ns   |
| Quadrature input high/low period | P <sub>HL</sub> | 4T + 6  | _   | ns   |
| Quadrature phase period          | P <sub>PH</sub> | 2T + 3  | _   | ns   |

1. In the formulas listed, T = the clock cycle. For 80MHz operation, T=12.5ns.  $V_{SS} = 0V$ ,  $V_{DD} = 3.0-3.6V$ ,

 $T_{A}$  = –40° to +85°C,  $C_{L}$   $\leq$  50pF.

2. Parameters listed are guaranteed by design.

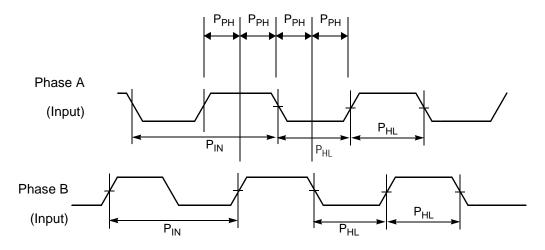


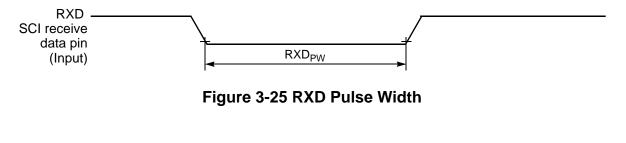

Figure 3-24 Quadrature Decoder Timing



# 3.10 Serial Communication Interface (SCI) Timing

## Table 3-15 SCI Timing<sup>4</sup>

Operating Conditions:  $V_{SS} = V_{SSA} = 0$  V,  $V_{DD} = V_{DDA} = 3.0-3.6$  V,  $T_A = -40^{\circ}$  to  $+85^{\circ}$ C,  $C_L \le 50$ pF,  $f_{OP} = 80$ MHz


| Characteristic               | Symbol            | Min      | Мах                          | Unit |
|------------------------------|-------------------|----------|------------------------------|------|
| Baud Rate <sup>1</sup>       | BR                | _        | (f <sub>MAX</sub> *2.5)/(80) | Mbps |
| RXD <sup>2</sup> Pulse Width | RXD <sub>PW</sub> | 0.965/BR | 1.04/BR                      | ns   |
| TXD <sup>3</sup> Pulse Width | TXD <sub>PW</sub> | 0.965/BR | 1.04/BR                      | ns   |

1. f<sub>MAX</sub> is the frequency of operation of the system clock in MHz.

2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

4. Parameters listed are guaranteed by design.



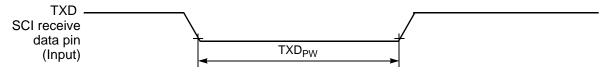



Figure 3-26 TXD Pulse Width



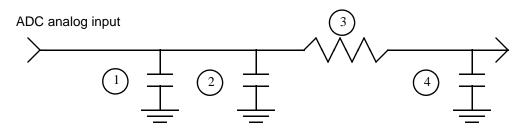
# 3.11 Analog-to-Digital Converter (ADC) Characteristics

### **Table 3-16 ADC Characteristics**

 $\begin{array}{l} \text{Operating Conditions: } V_{\text{SS}} = V_{\text{SSA}} = 0 \text{ V}, V_{\text{DD}} = V_{\text{DDA}} = 3.0 - 3.6 \text{ V}, V_{\text{REF}} = V_{\text{DD}} - 0.3 \text{ V}, \text{ADCDIV} = 4, 9, \text{ or } 14, \text{ (for optimal performance)}, \\ \text{ADC clock} = 4 \text{MHz}, 3.0 - 3.6 \text{ V}, T_{\text{A}} = -40^{\circ} \text{ to } +85^{\circ}\text{C}, C_{\text{L}} \leq 50 \text{pF}, f_{\text{OP}} = 80 \text{MHz} \end{array}$ 

| Characteristic                                     | Symbol              | Min              | Тур      | Max              | Unit                                 |
|----------------------------------------------------|---------------------|------------------|----------|------------------|--------------------------------------|
| ADC input voltages                                 | V <sub>ADCIN</sub>  | 0 <sup>1</sup>   | _        | $V_{REF}^2$      | V                                    |
| Resolution                                         | R <sub>ES</sub>     | 12               | —        | 12               | Bits                                 |
| Integral Non-Linearity <sup>3</sup>                | INL                 | —                | +/- 2.5  | +/- 4            | LSB <sup>4</sup>                     |
| Differential Non-Linearity                         | DNL                 | —                | +/- 0.9  | +/- 1            | LSB <sup>4</sup>                     |
| Monotonicity                                       |                     |                  | GUARANTE | ED               |                                      |
| ADC internal clock <sup>5</sup>                    | f <sub>ADIC</sub>   | 0.5              | —        | 5                | MHz                                  |
| Conversion range                                   | R <sub>AD</sub>     | V <sub>SSA</sub> | —        | V <sub>DDA</sub> | V                                    |
| Conversion time                                    | t <sub>ADC</sub>    | —                | 6        | —                | t <sub>AIC</sub> cycles <sup>6</sup> |
| Sample time                                        | t <sub>ADS</sub>    | —                | 1        | —                | t <sub>AIC</sub> cycles <sup>6</sup> |
| Input capacitance                                  | C <sub>ADI</sub>    |                  | 5        |                  | pF <sup>6</sup>                      |
| Gain Error (transfer gain) <sup>5</sup>            | E <sub>GAIN</sub>   | 0.93             | 1.00     | 1.08             | _                                    |
| Total Harmonic Distortion <sup>5</sup>             | THD                 | 60               | 64       |                  |                                      |
| Offset Voltage <sup>5</sup>                        | V <sub>OFFSET</sub> | -90              | -25      | +10              | mV                                   |
| Signal-to-Noise plus Distortion <sup>5</sup>       | SINAD               | 55               | 60       | _                | _                                    |
| Effective Number of Bits <sup>5</sup>              | ENOB                | 9                | 10       |                  | bit                                  |
| Spurious Free Dynamic Range <sup>5</sup>           | SFDR                | 65               | 70       | _                | dB                                   |
| Bandwidth                                          | BW                  |                  | 100      |                  | KHz                                  |
| ADC Quiescent Current (each dual ADC)              | I <sub>ADC</sub>    | —                | 50       | —                | mA                                   |
| V <sub>REF</sub> Quiescent Current (each dual ADC) | I <sub>VREF</sub>   | _                | 12       | 16.5             | mA                                   |

1. For optimum ADC performance, keep the minimum  $V_{ADCIN}$  value  $\geq 25$ mV. Inputs less than 25mV may convert to a digital output code of 0.


2.  $V_{\text{REF}}$  must be equal to or less than  $V_{\text{DDA}}$  and must be greater than 2.7V. For optimal ADC performance, set  $V_{\text{REF}}$  to  $V_{\text{DDA}}$ -0.3V.

3. Measured in 10-90% range.

- 4. LSB = Least Significant Bit.
- 5. Guaranteed by characterization.

6.  $t_{AIC} = 1/f_{ADIC}$ 





- 1. Parasitic capacitance due to package, pin to pin, and pin to package base coupling. (1.8pf)
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing. (2.04pf)
- 3. Equivalent resistance for the ESD isolation resistor and the channel select mux. (500 ohms)

4. Sampling capacitor at the sample and hold circuit. Capacitor 4 is normally disconnected from the input and is only connected to it at sampling time. (1pf)

## Figure 3-27 Equivalent Analog Input Circuit

# 3.12 Controller Area Network (CAN) Timing

 $\label{eq:conditions: V_SS} \begin{array}{c} \textbf{Table 3-17 CAN Timing^2} \\ \text{Operating Conditions: } V_{SS} = V_{SSA} = 0 \text{ V}, \text{ } V_{DD} = V_{DDA} = 3.0 - 3.6 \text{ V}, \text{ } T_A = -40^\circ \text{ to } +85^\circ \text{C}, \text{ } C_L \leq 50 \text{pF}, \text{ } \text{MSCAN Clock} = 30 \text{MHz} \end{array}$ 

| Characteristic                    | Symbol              | Min | Мах | Unit |
|-----------------------------------|---------------------|-----|-----|------|
| Baud Rate                         | BR <sub>CAN</sub>   | _   | 1   | Mbps |
| Bus Wakeup detection <sup>1</sup> | T <sub>WAKEUP</sub> | 5   | _   | μs   |

1. If Wakeup glitch filter is enabled during the design initialization and also CAN is put into SLEEP mode then, any bus event (on MSCAN\_RX pin) whose duration is less than 5 microseconds is filtered away. However, a valid CAN bus wakeup detection takes place for a wakeup pulse equal to or greater than 5 microseconds. The number 5 microseconds originates from the fact that the CAN wakeup message consists of 5 dominant bits at the highest possible baud rate of 1Mbps.

2. Parameters listed are guaranteed by design

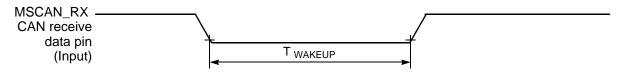
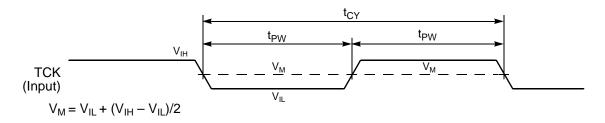



Figure 3-28 Bus Wakeup Detection



# 3.13 JTAG Timing


 $\label{eq:conditions} \begin{array}{c} \mbox{Table 3-18 JTAG Timing}^{1,\ 3} \\ \mbox{Operating Conditions: } V_{SS} = V_{SSA} = 0 \ V, \ V_{DD} = V_{DDA} = 3.0 - 3.6 \ V, \ T_A = -40^\circ \ to \ +85^\circ C, \ C_L \leq 50 \ pF, \ f_{OP} = 80 \ MHz \end{array}$ 

| Characteristic                          | Symbol            | Min | Max  | Unit |
|-----------------------------------------|-------------------|-----|------|------|
| TCK frequency of operation <sup>2</sup> | f <sub>OP</sub>   | DC  | 10   | MHz  |
| TCK cycle time                          | t <sub>CY</sub>   | 100 | —    | ns   |
| TCK clock pulse width                   | t <sub>PW</sub>   | 50  | —    | ns   |
| TMS, TDI data set-up time               | t <sub>DS</sub>   | 0.4 | —    | ns   |
| TMS, TDI data hold time                 | t <sub>DH</sub>   | 1.2 | _    | ns   |
| TCK low to TDO data valid               | t <sub>DV</sub>   | —   | 26.6 | ns   |
| TCK low to TDO tri-state                | t <sub>TS</sub>   | —   | 23.5 | ns   |
| TRST assertion time                     | t <sub>TRST</sub> | 50  | —    | ns   |
| DE assertion time                       | t <sub>DE</sub>   | 4T  | —    | ns   |

1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz operation, T = 12.5ns.

2. TCK frequency of operation must be less than 1/8 the processor rate.

3. Parameters listed are guaranteed by design.



### Figure 3-29 Test Clock Input Timing Diagram





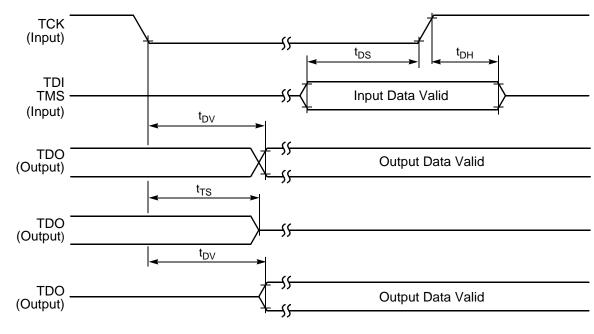
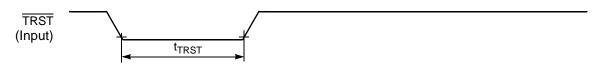
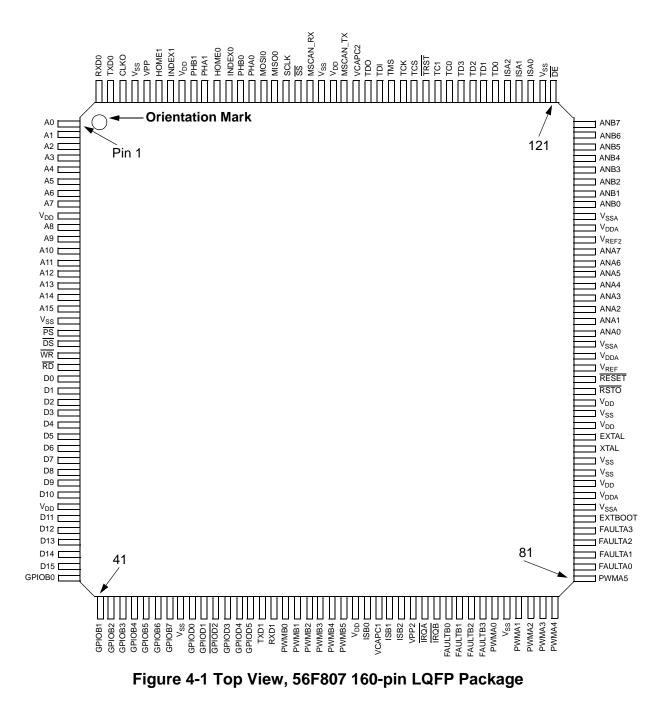



Figure 3-30 Test Access Port Timing Diagram



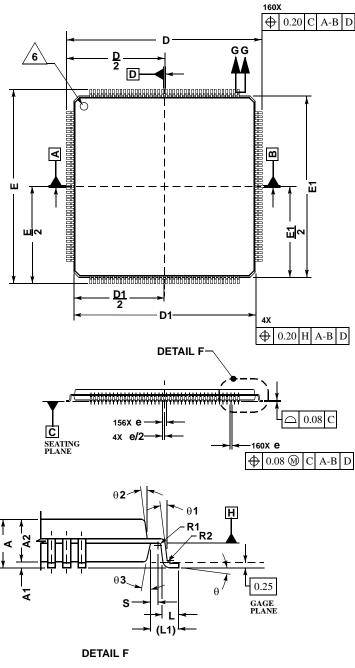






Figure 3-32 OnCE—Debug Event



# Part 4 Packaging


# 4.1 Package and Pin-Out Information 56F807

This section contains package and pin-out information for the 56F807. This device comes in two case types: low-profile quad flat pack (LQFP) or mold array process ball grid assembly (MAPBGA). **Figure 4-1** shows the package outline for the LQFP case, **Figure 4-2** shows the mechanical parameters for the LQFP case, and **Table 4-1** lists the pinout for the LQFP case. **Figure 4-3** shows the mechanical parameters for the MAPBGA case, and **Table 4-2** lists the pinout for the MAPBGA package.



56F807 Technical Data Technical Data, Rev. 16





b 5

**SECTION G-G** 

NOTES:

- DIMENSIONS ARE IN MILLIMETERS. 1. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- DATUMS A, B, AND D TO BE DETERMINED 3 WHERE THE LEADS EXIT THE PLASTIC BODY AT DATUM PLANE H.
- DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE 4 PROTRUSION IS 0.25mm PER SIDE. DIMENSIONS D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS
- INCLUDING MOLD MISMATCH. DIMENSION b DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN A PROTRUSION AND AN ADJACENT LEAD IS 0.07mm

<sup>6</sup> EXACT SHAPE OF CORNERS MAY VARY.

|     | MILLIMETERS |      |  |  |  |  |  |
|-----|-------------|------|--|--|--|--|--|
| DIM | MIN         | MAX  |  |  |  |  |  |
| Α   | -           | 1.60 |  |  |  |  |  |
| A1  | 0.05        | 0.15 |  |  |  |  |  |
| A2  | 1.35        | 1.45 |  |  |  |  |  |
| b   | 0.17        | 0.27 |  |  |  |  |  |
| b1  | 0.17        | 0.23 |  |  |  |  |  |
| с   | 0.09        | 0.20 |  |  |  |  |  |
| c1  | 0.09        | 0.16 |  |  |  |  |  |
| D   | 26.00       | BSC  |  |  |  |  |  |
| D1  | 24.00       | BSC  |  |  |  |  |  |
| e   | 0.50        | BSC  |  |  |  |  |  |
| E   | 26.00       | BSC  |  |  |  |  |  |
| E1  | 24.00       | BSC  |  |  |  |  |  |
| L   | 0.45        | 0.75 |  |  |  |  |  |
| L1  | 1.00        | REF  |  |  |  |  |  |
| R1  | 0.08        |      |  |  |  |  |  |
| R2  | 0.08        | 0.20 |  |  |  |  |  |
| S   | 0.20        |      |  |  |  |  |  |
| θ   | 00          | 7 °  |  |  |  |  |  |
| θ1  | 0°          |      |  |  |  |  |  |
| θ2  | 11°         | 13°  |  |  |  |  |  |
| θ3  | 11 °        | 13°  |  |  |  |  |  |

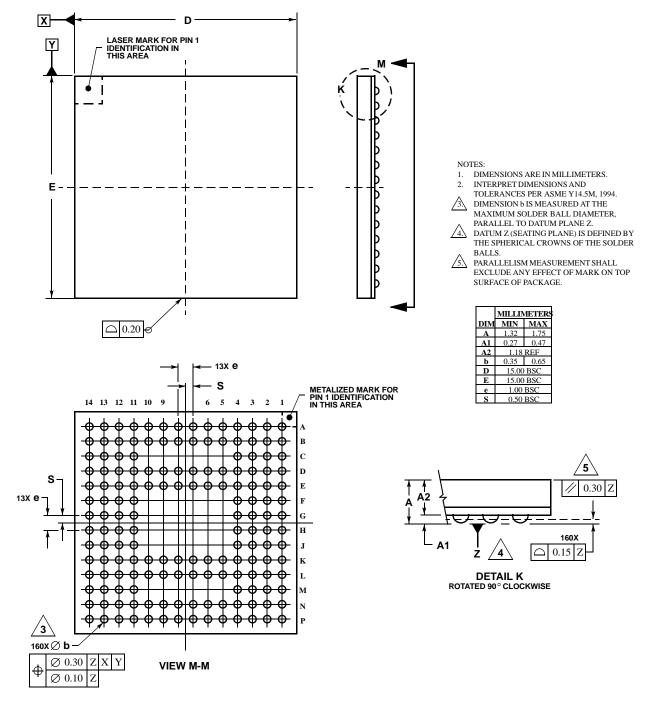
CASE 1259-01 **ISSUE O** 

## Figure 4-2 160-pin LQFP Mechanical Information

Please see www.freescale.com for the most current case outline.



| Pin No. | Signal Name     | Pin No. | Signal Name     | Pin No. | Signal Name      | Pin No. | Signal Name     |
|---------|-----------------|---------|-----------------|---------|------------------|---------|-----------------|
| 1       | A0              | 41      | GPIOB1          | 81      | PWMA5            | 121     | DE              |
| 2       | A1              | 42      | GPIOB2          | 82      | FAULTA0          | 122     | V <sub>SS</sub> |
| 3       | A2              | 43      | GPIOB3          | 83      | FAULTA1          | 123     | ISA0            |
| 4       | A3              | 44      | GPIOB4          | 84      | FAULTA2          | 124     | ISA1            |
| 5       | A4              | 45      | GPIOB5          | 85      | FAULTA3          | 125     | ISA2            |
| 6       | A5              | 46      | GPIOB6          | 86      | EXTBOOT          | 126     | TD0             |
| 7       | A6              | 47      | GPIOB7          | 87      | V <sub>SSA</sub> | 127     | TD1             |
| 8       | A7              | 48      | V <sub>SS</sub> | 88      | V <sub>DDA</sub> | 128     | TD2             |
| 9       | V <sub>DD</sub> | 49      | GPIOD0          | 89      | V <sub>DD</sub>  | 129     | TD3             |
| 10      | A8              | 50      | GPIOD1          | 90      | V <sub>SS</sub>  | 130     | TC0             |
| 11      | A9              | 51      | GPIOD2          | 91      | V <sub>SS</sub>  | 131     | TC1             |
| 12      | A10             | 52      | GPIOD3          | 92      | XTAL             | 132     | TRST            |
| 13      | A11             | 53      | GPIOD4          | 93      | EXTAL            | 133     | TCS             |
| 14      | A12             | 54      | GPIOD5          | 94      | V <sub>DD</sub>  | 134     | ТСК             |
| 15      | A13             | 55      | TXD1            | 95      | V <sub>SS</sub>  | 135     | TMS             |
| 16      | A14             | 56      | RXD1            | 96      | V <sub>DD</sub>  | 136     | TDI             |
| 17      | A15             | 57      | PWMB0           | 97      | RSTO             | 137     | TDO             |
| 18      | V <sub>SS</sub> | 58      | PWMB1           | 98      | RESET            | 138     | VCAPC2          |
| 19      | PS              | 59      | PWMB2           | 99      | VREF             | 139     | MSCAN_TX        |
| 20      | DS              | 60      | PWMB3           | 100     | V <sub>DDA</sub> | 140     | V <sub>DD</sub> |
| 21      | WR              | 61      | PWMB4           | 101     | V <sub>SSA</sub> | 141     | V <sub>SS</sub> |
| 22      | RD              | 62      | PWMB5           | 102     | ANA0             | 142     | MSCAN_RX        |
| 23      | D0              | 63      | V <sub>DD</sub> | 103     | ANA1             | 143     | SS              |
| 24      | D1              | 64      | ISB0            | 104     | ANA2             | 144     | SCLK            |
| 25      | D2              | 65      | VCAPC1          | 105     | ANA3             | 145     | MISO            |
| 26      | D3              | 66      | ISB1            | 106     | ANA4             | 146     | MOSI            |
| 27      | D4              | 67      | ISB2            | 107     | ANA5             | 147     | PHA0            |
| 28      | D5              | 68      | VPP2            | 108     | ANA6             | 148     | PHB0            |
| 29      | D6              | 69      | IRQA            | 109     | ANA7             | 149     | INDEX0          |
| 30      | D7              | 70      | IRQB            | 110     | VREF2            | 150     | HOME0           |


# Table 4-1 56F807 LQFP Package Pin Identification by Pin Number



| Pin No. | Signal Name     | Pin No. | Signal Name     | Pin No. | Signal Name      | Pin No. | Signal Name     |
|---------|-----------------|---------|-----------------|---------|------------------|---------|-----------------|
| 31      | D8              | 71      | FAULTB0         | 111     | V <sub>DDA</sub> | 151     | PHA1            |
| 32      | D9              | 72      | FAULTB1         | 112     | V <sub>SSA</sub> | 152     | PHB1            |
| 33      | D10             | 73      | FAULTB2         | 113     | ANB0             | 153     | V <sub>DD</sub> |
| 34      | V <sub>DD</sub> | 74      | FAULTB3         | 114     | ANB1             | 154     | INDEX1          |
| 35      | D11             | 75      | PWMA0           | 115     | ANB2             | 155     | HOME1           |
| 36      | D12             | 76      | V <sub>SS</sub> | 116     | ANB3             | 156     | VPP             |
| 37      | D13             | 77      | PWMA1           | 117     | ANB4             | 157     | V <sub>SS</sub> |
| 38      | D14             | 78      | PWMA2           | 118     | ANB5             | 158     | CLKO            |
| 39      | D15             | 79      | PWMA3           | 119     | ANB6             | 159     | TXD0            |
| 40      | GPIOB0          | 80      | PWMA4           | 120     | ANB7             | 160     | RXD0            |

## Table 4-1 56F807 LQFP Package Pin Identification by Pin Number (Continued)





### CASE 1268-01 ISSUE O

## Figure 4-3 160 MAPBGA Mechanical Information

Please see **www.freescale.com** for the most current case outline.



| Solder<br>Ball | Signal Name     | Solder<br>Ball | Signal Name     | Solder<br>Ball | Signal Name      | Solder<br>Ball | Signal Name     |
|----------------|-----------------|----------------|-----------------|----------------|------------------|----------------|-----------------|
| C3             | A0              | N4             | GPIOB5          | K12            | V <sub>SSA</sub> | E10            | TC1             |
| B2             | A1              | P4             | GPIOB6          | K13            | V <sub>DDA</sub> | D9             | TRST            |
| D3             | A2              | M4             | GPIOB7          | L14            | V <sub>DD</sub>  | B9             | TCS             |
| C2             | A3              | L5             | V <sub>SS</sub> | K11            | V <sub>SS</sub>  | E9             | тск             |
| B1             | A4              | N5             | GPIOD0          | K14            | V <sub>SS</sub>  | A9             | TMS             |
| D2             | A5              | P5             | GPIOD1          | J13            | XTAL             | D8             | TDI             |
| C1             | A6              | K5             | GPIOD2          | J12            | EXTAL            | B8             | TDO             |
| D1             | A7              | N6             | GPIOD3          | J14            | V <sub>DD</sub>  | A8             | VCAPC2          |
| E3             | V <sub>DD</sub> | L6             | GPIOD4          | J11            | V <sub>SS</sub>  | E8             | MSCAN_TX        |
| E2             | A8              | K6             | GPIOD5          | H13            | V <sub>DD</sub>  | D7             | V <sub>DD</sub> |
| E1             | A9              | P6             | TXD1            | H12            | RSTO             | E7             | V <sub>SS</sub> |
| F3             | A10             | N7             | RXD1            | H14            | RESET            | D6             | MSCAN_RX        |
| F2             | A11             | L7             | PWMB0           | H11            | VREF             | H1             | D1              |
| F1             | A12             | P7             | PWMB1           | G12            | V <sub>DDA</sub> | H2             | D2              |
| G3             | A13             | K7             | PWMB2           | G11            | V <sub>SSA</sub> | J3             | D3              |
| G2             | A14             | L8             | PWMB3           | G14            | ANA0             | J1             | D4              |
| G1             | A15             | K8             | PWMB4           | B13            | DE               | J2             | D5              |
| F4             | V <sub>SS</sub> | P8             | PWMB5           | A14            | V <sub>SS</sub>  | K3             | D6              |
| G4             | PS              | L9             | V <sub>DD</sub> | B12            | ISA0             | K1             | D7              |
| H4             | DS              | N8             | ISB0            | A13            | ISA1             | L1             | D8              |
| J4             | WR              | P14            | PWMA5           | A12            | ISA2             | K2             | D9              |
| K4             | RD              | M13            | FAULTA0         | B11            | TD0              | L3             | D10             |



## Table 4-2 160 MAPBGA Package Pin Identification by Pin Number (Continued)

| Solder<br>Ball | Signal Name | Solder<br>Ball | Signal Name      | Solder<br>Ball | Signal Name      | Solder<br>Ball | Signal Name     |
|----------------|-------------|----------------|------------------|----------------|------------------|----------------|-----------------|
| P1             | GPIOB1      | L12            | FAULTA1          | A11            | TD1              | M1             | V <sub>DD</sub> |
| N3             | GPIOB2      | N14            | FAULTA2          | D10            | TD2              | L2             | D11             |
| P2             | GPIOB3      | L13            | FAULTA3          | B10            | TD3              | N1             | D12             |
| P3             | GPIOB4      | M14            | EXTBOOT          | A10            | TC0              | M2             | D13             |
| N2             | D14         | N11            | V <sub>SS</sub>  | D14            | V <sub>SSA</sub> | D5             | PHB0            |
| M3             | D15         | P13            | PWMA1            | D11            | ANA8             | B6             | INDEX0          |
| L4             | GPIOB0      | N12            | PWMA2            | D12            | ANA9             | A5             | HOME0           |
| K10            | VCAPC1      | N13            | PWMA3            | D13            | ANA10            | E4             | PHA1            |
| K9             | ISB1        | M12            | PWMA4            | C14            | ANA11            | B5             | PHB1            |
| P9             | ISB2        | F11            | ANA1             | C13            | ANA12            | A4             | V <sub>DD</sub> |
| L10            | VPP2        | G13            | ANA2             | C11            | ANA13            | D4             | INDEX1          |
| N9             | IRQA        | F12            | ANA3             | B14            | ANA14            | C4             | HOME1           |
| P10            | IRQB        | F14            | ANA4             | C12            | ANA15            | B4             | VPP             |
| P11            | FAULTB0     | E11            | ANA5             | A7             | SS               | A2             | CLKO            |
| N10            | FAULTB1     | F13            | ANA6             | E5             | SCLK             | B3             | TXD0            |
| L11            | FAULTB2     | E12            | ANA7             | B7             | MISO             | A1             | RXD0            |
| M11            | FAULTB3     | E14            | VREF2            | A6             | MOSI             | A3             | V <sub>SS</sub> |
| P12            | PWMA0       | E13            | V <sub>DDA</sub> | E6             | PHA0             | H3             | D0              |

56F807 Technical Data Technical Data, Rev. 16



# Part 5 Design Considerations

# 5.1 Thermal Design Considerations

An estimation of the chip junction temperature, T<sub>J</sub>, in °C can be obtained from the equation:

**Equation 1:**  $T_J = T_A + (P_D \times R_{\theta JA})$ 

Where:

 $T_A$  = ambient temperature °C

 $R_{\theta IA}$  = package junction-to-ambient thermal resistance °C/W

 $P_D$  = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

**Equation 2:**  $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ 

Where:

 $R_{\theta JA}$  = package junction-to-ambient thermal resistance °C/W  $R_{\theta JC}$  = package junction-to-case thermal resistance °C/W  $R_{\theta CA}$  = package case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$  is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from  $R_{\theta JA}$  do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

### **Definitions:**

A complicating factor is the existence of three common definitions for determining the junction-to-case thermal resistance in plastic packages:

• Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation across the surface.



- Measure the thermal resistance from the junction to where the leads are attached to the case. This definition is approximately equal to a junction to board thermal resistance.
- Use the value obtained by the equation  $(T_J T_T)/P_D$  where  $T_T$  is the temperature of the package case determined by a thermocouple.

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

# 5.2 Electrical Design Considerations

## CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation:

- Provide a low-impedance path from the board power supply to each  $V_{DD}$  pin on the controller, and from the board ground to each  $V_{SS}$  pin.
- The minimum bypass requirement is to place 0.1  $\mu$ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V<sub>DD</sub>/V<sub>SS</sub> pairs, including V<sub>DDA</sub>/V<sub>SSA</sub>. Ceramic and tantalum capacitors tend to provide better performance tolerances.





- Ensure that capacitor leads and associated printed circuit traces that connect to the chip  $V_{DD}$  and  $V_{SS}$  pins are less than 0.5 inch per capacitor lead.
- Bypass the  $V_{DD}$  and  $V_{SS}$  layers of the PCB with approximately 100  $\mu$ F, preferably with a high-grade capacitor such as a tantalum capacitor.
- Because the controller's output signals have fast rise and fall times, PCB trace lengths should be minimal.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the  $V_{DD}$  and  $V_{SS}$  circuits.
- Take special care to minimize noise levels on the VREF,  $V_{DDA}$  and  $V_{SSA}$  pins.
- Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means to assert TRST independently of RESET. TRST must be asserted at power up for proper operation. Designs that do not require debugging functionality, such as consumer products, TRST should be tied low.
- Because the Flash memory is programmed through the JTAG/OnCE port, designers should provide an interface to this port to allow in-circuit Flash programming.



# Part 6 Ordering Information

**Table 6-1** lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized distributor to determine availability and to order parts.

| Part   | Supply<br>Voltage | Package Type                                   | Pin<br>Count | Ambient<br>Frequency<br>(MHz) | Order Number    |
|--------|-------------------|------------------------------------------------|--------------|-------------------------------|-----------------|
| 56F807 | 3.0–3.6 V         | Low-Profile Quad Flat Pack (LQFP)              | 160          | 80                            | DSP56F807PY80   |
| 56F807 | 3.0–3.6 V         | Mold Array Process Ball Grid Array<br>(MAPBGA) | 160          | 80                            | DSP56F807VF80   |
|        |                   |                                                |              |                               |                 |
| 56F807 | 3.0–3.6 V         | Low-Profile Quad Flat Pack (LQFP)              | 160          | 80                            | DSP56F807PY80E* |
| 56F807 | 3.0–3.6 V         | Mold Array Process Ball Grid Array<br>(MAPBGA) | 160          | 80                            | DSP56F807VF80E* |

## Table 6-1 56F807 Ordering Information

\*This package is RoHS compliant.



\_\_\_\_\_

**Electrical Design Considerations** 



#### How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see <a href="http://www.freescale.com">http://www.freescale.com</a> or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty. representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.



Freescale <sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2005. All rights reserved.

DSP56F807 Rev. 16 09/2007