N-channel TrenchMOS standard level FET Rev. 02 — 20 August 2007

Product data sheet

Product profile 1.

1.1 General description

N-channel enhancement mode power Field-Effect Transistor (FET) in a plastic package, using NXP Ultra High-Performance (UHP) automotive TrenchMOS technology.

1.2 Features

- 175 °C rated
- Standard level compatible
- 1.3 Applications
 - 12 V loads
 - General purpose power switching
- Q101 compliant
- TrenchMOS technology
- Automotive systems
- Motors, lamps and solenoids

1.4 Quick reference data

Table 1	. Qı	uick ref	erence

Parameter	Conditions		Min	Тур	Max	Unit
drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C};$ see <u>Figure 1</u> and <u>4</u>	<u>[1][2]</u>	-	-	100	A
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	333	W
aracteristics						
drain-source on-state resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \text{ °C}; \text{ see } \underline{\text{Figure 12}} \text{ and} \\ \underline{13} \end{array}$		-	1.5	1.8	mΩ
ne ruggedness						
non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 100 \; A; \; V_{sup} \leq 30 \; V; \\ R_{GS} &= 50 \; \Omega; \; V_{GS} = 10 \; V; \\ T_{j(init)} &= 25 \; ^\circ C \end{split} $		-	-	1.7	J
	drain current total power dissipation aracteristics drain-source on-state resistance non-repetitive drain-source avalanche	$\label{eq:GS} \begin{array}{ll} \text{drain current} & \text{V}_{\text{GS}} = 10 \ \text{V}; \ \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; \\ \text{see} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{drain current} & \text{V}_{\text{GS}} = 10 \text{ V}; \text{ T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; & \begin{array}{c} 11 \ 12 \end{array} \text{ -} & - \\ \text{see Figure 1} \ \text{and} \ 4 & \end{array} \\ \hline \text{total power dissipation} & \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 2} & - & - \\ \hline \textbf{aracteristics} & & \\ \hline \text{drain-source on-state} & \text{V}_{\text{GS}} = 10 \ \text{V}; \ \text{I}_{\text{D}} = 25 \ \text{A}; & - & 1.5 \\ \hline \text{resistance} & & T_{j} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 12} \ \text{and} & \\ \hline \textbf{13} & & \\ \hline \textbf{non-repetitive} & \text{I}_{\text{D}} = 100 \ \text{A}; \ \text{V}_{\text{sup}} \leq 30 \ \text{V}; & - & - \\ \hline \text{drain-source avalanche} & & R_{\text{GS}} = 50 \ \Omega; \ \text{V}_{\text{GS}} = 10 \ \text{V}; \end{array}$	$\begin{array}{c} \text{drain current} & \text{V}_{\text{GS}} = 10 \text{ V}; \text{ T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; & \boxed{112} \ ^{\circ} - & 100 \\ \text{see Figure 1 and 4} & & & & & \\ \text{total power dissipation} & \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; \text{see Figure 2} & - & - & 333 \\ \hline \text{aracteristics} & & & & \\ \text{drain-source on-state} & \text{V}_{\text{GS}} = 10 \ \text{V}; \ \text{I}_{\text{D}} = 25 \ \text{A}; & & - & 1.5 \\ \text{resistance} & & \text{T}_{j} = 25 \ ^{\circ}\text{C}; \text{see Figure 12 and} & & & \\ 13 & & & \\ \hline \text{non-repetitive} & \text{I}_{\text{D}} = 100 \ \text{A}; \ \text{V}_{\text{sup}} \leq 30 \ \text{V}; & & - & 1.7 \\ \text{drain-source avalanche} & & \text{R}_{\text{GS}} = 50 \ \Omega; \ \text{V}_{\text{GS}} = 10 \ \text{V}; \end{array}$

[1] Refer to document 9397 750 12572 for further information.

[2] Continuous current is limited by package.

N-channel TrenchMOS standard level FET

2. Pinning information

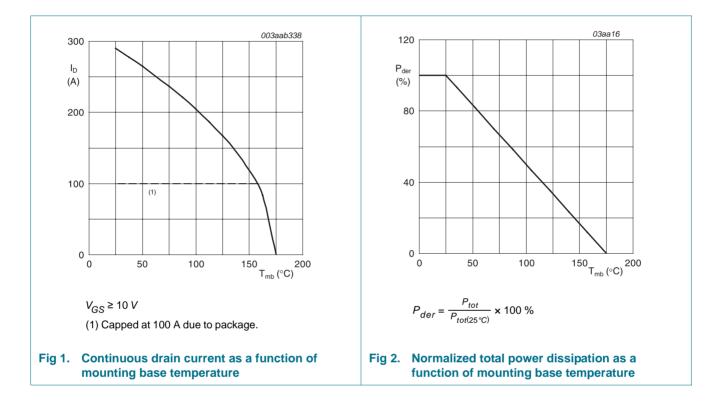
Table 2.	Pinning			
Pin	Symbol	Description	Simplified outline	Graphic Symbol
1	G	gate	mb	D
2	D	drain		, Š
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

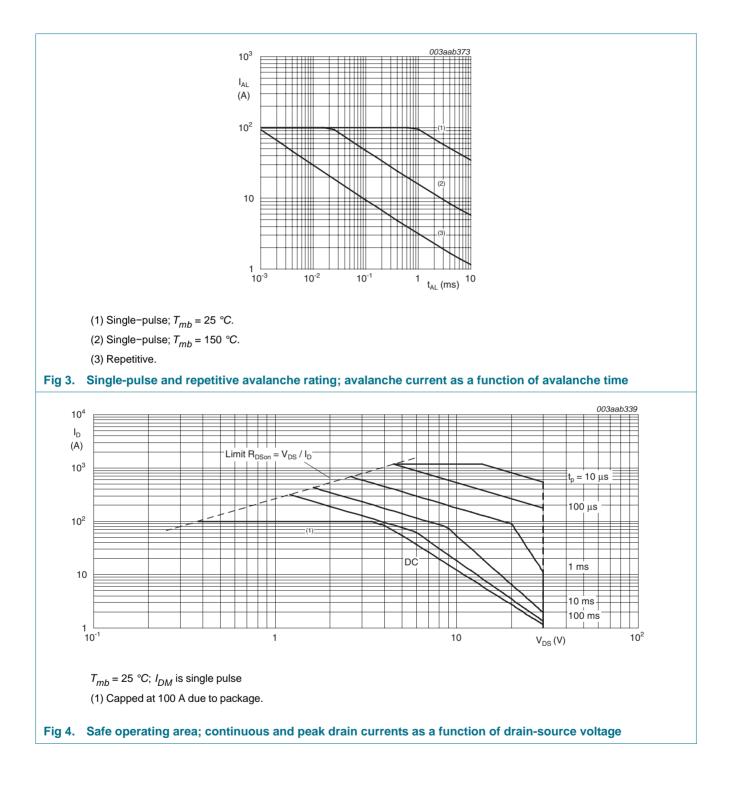
3. Ordering information

Table 3. Ordering information

Type number	Package			
	Name	Description	Version	
BUK761R8-30C	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404	

4. Limiting values

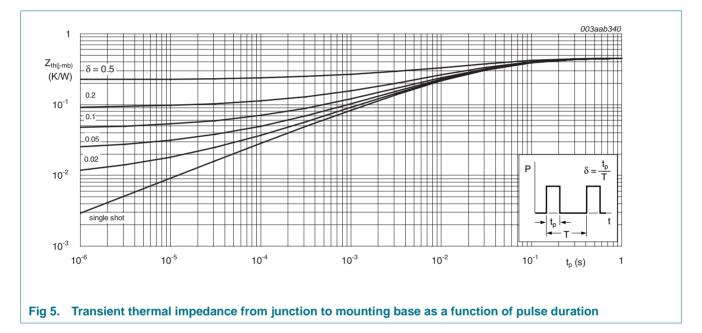

Table 4.Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Mir	n Max	Unit
V _{DS}	drain-source voltage		-	30	V
V _{DGR}	drain-gate voltage	R_{GS} = 20 k Ω	-	30	V
V _{GS}	gate-source voltage		-20	20	V
I _D	drain current	T_{mb} = 100 °C; V_{GS} = 10 V; see <u>Figure 1</u> and <u>4</u>	<u>[1][2]</u> _	100	А
		$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 1}} \text{ and } \frac{4}{\text{C}}$	[1][2] _	100	А
		$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 1}} \text{ and } \frac{4}{\text{C}}$	[1][3]	312	А
I _{DM}	peak drain current	T_{mb} = 25 °C; $t_p \leq$ 10 $\mu s;$ pulsed; see Figure 4	-	1249	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	333	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Avalanc	he ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{array}{l} \text{I}_{\text{D}} = 100 \text{ A}; \text{V}_{\text{sup}} \leq 30 \text{ V}; \text{R}_{\text{GS}} = 50 \Omega; \\ \text{V}_{\text{GS}} = 10 \text{ V}; \text{T}_{j(\text{init})} = 25 ^{\circ}\text{C} \end{array}$	-	1.7	J
E _{DS(AL)R}	repetitive drain-source avalanche energy	see Figure 3	[4][5] [6][7]	-	J
Source-o	drain diode				
I _S	source current	T _{mb} = 25 °C	<u>[1][3]</u>	312	А
		T _{mb} = 25 °C	<u>[1][2]</u> _	100	А
I _{SM}	peak source current	$t_p \leq$ 10 $\mu s;$ pulsed; T_{mb} = 25 $^{\circ}C$	-	1249	А
BUK761R8-30C_	2			© NXP B.	/. 2007. All rights re

Product data sheet

- [1] Refer to document 9397 750 12572 for further information.
- [2] Continuous current is limited by package.
- [3] Current is limited by chip power dissipation rating.
- [4] Maximum value not quoted. Repetitive rating defined in avalanche rating figure.
- [5] Single-pulse avalanche rating limited by maximum junction temperature of 175 $^\circ$ C.
- [6] Repetitive avalanche rating limited by an average junction temperature of 170 °C.
- [7] Refer to application note AN10273 for further information.

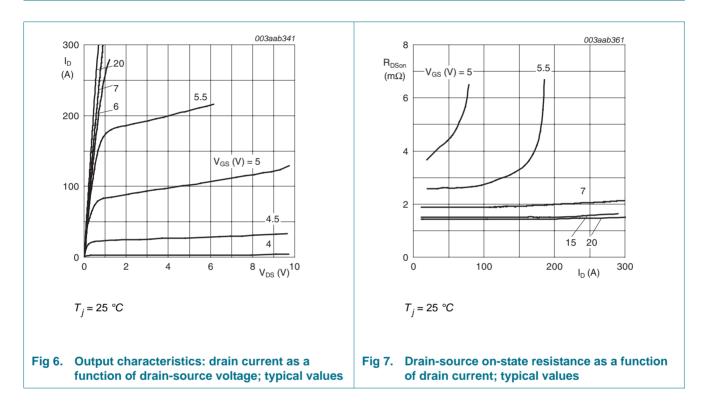


N-channel TrenchMOS standard level FET

5. Thermal characteristics

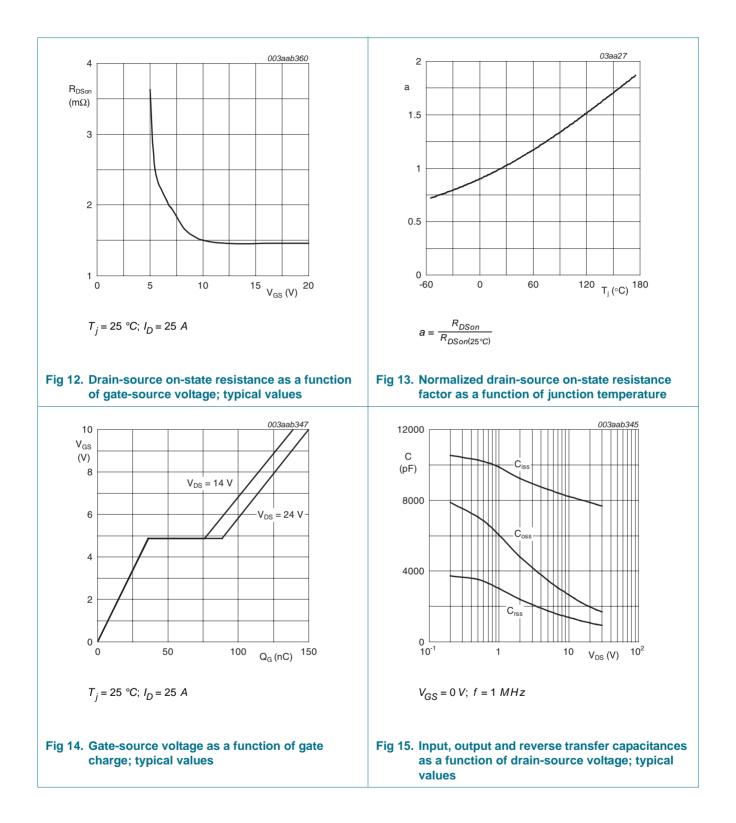
Table 5.	Thermal characteristic	cs				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on printed circuit board; minimum footprint	-	50	-	K/W
R _{th(j-mb)}	thermal resistance from junction to mounting base	see <u>Figure 5</u>	-	-	0.45	K/W

6. Characteristics


Table 6.Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static char	acteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ \text{V}; \\ T_j = 25 \ ^{\circ}\text{C}$	30	-	-	V
		$I_D = 250 \ \mu A; V_{GS} = 0 \ V;$ $T_j = -55 \ ^{\circ}C$	27	-	-	V
V _{GSth}	gate-source threshold voltage	$\begin{split} I_D &= 1 \text{ mA; } V_{DS} = V_{GS}; \\ T_j &= -55 ^\circ\text{C}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10} \end{split}$	-	-	4.4	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS};$ $T_j = 175 \text{ °C}; \text{ see } Figure 11 \text{ and}$ 10	1	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see Figure 11 and 10	2	3	4	V


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DSS}	drain leakage current	V_{DS} = 30 V; V_{GS} = 0 V; T_j = 25 °C	-	0.02	1	μA
		V _{DS} = 30 V; V _{GS} = 0 V; T _j = 175 °C	-	-	500	μA
I _{GSS}	gate leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = 20 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	2	100	nA
		$V_{DS} = 0 V; V_{GS} = -20 V;$ $T_j = 25 °C$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ T _j = 175 °C; see <u>Figure 12</u> and <u>13</u>	-	-	3.4	mΩ
		V_{GS} = 10 V; I_D = 25 A; T_j = 25 °C; see <u>Figure 12</u> and <u>13</u>	-	1.5	1.8	mΩ
Source-dr	ain diode					
V _{SD}	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 16</u>	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ dI}_{S}/\text{dt} = -100 \text{ A}/\mu\text{s};$ $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}$	-	73	-	ns
Qr	recovered charge	$ I_{S} = 20 \text{ A}; \text{ dI}_{S}/\text{dt} = -100 \text{ A}/\mu\text{s}; $	-	48	-	nC
Dynamic o	haracteristics					
Q _{G(tot)}	total gate charge	I _D = 25 A; V _{DS} = 24 V; V _{GS} = 10 V; see <u>Figure 14</u>	-	150	-	nC
Q _{GS}	gate-source charge	I _D = 25 A; V _{DS} = 24 V; V _{GS} = 10 V; see <u>Figure 14</u>	-	36	-	nC
Q _{GD}	gate-drain charge	I _D = 25 A; V _{DS} = 24 V; V _{GS} = 10 V; see <u>Figure 14</u>	-	52	-	nC
V _{GS(pl)}	gate-source plateau voltage	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V};$ see Figure 14	-	5	-	V
C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 25 V; f = 1 MHz; T _j = 25 °C; see <u>Figure 15</u>	-	7762	10349	pF
C _{oss}	output capacitance	V _{GS} = 0 V; V _{DS} = 25 V; f = 1 MHz; T _j = 25 °C; see <u>Figure 15</u>	-	1807	2168	pF
C _{rss}	reverse transfer capacitance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V; \ V_{DS} = 25 \ V; \\ f = 1 \ MHz; \ T_{j} = 25 \ ^{\circ}C; \\ see \ \overline{Figure \ 15} \end{array}$	-	996	1365	pF
d(on)	turn-on delay time	V_{DS} = 25 V; R _L = 1.2 Ω; V_{GS} = 10 V; R _{G(ext)} = 10 Ω	-	52	-	ns
r	rise time		-	110	-	ns
t _{d(off)}	turn-off delay time		-	186	-	ns


N-channel TrenchMOS standard level FET

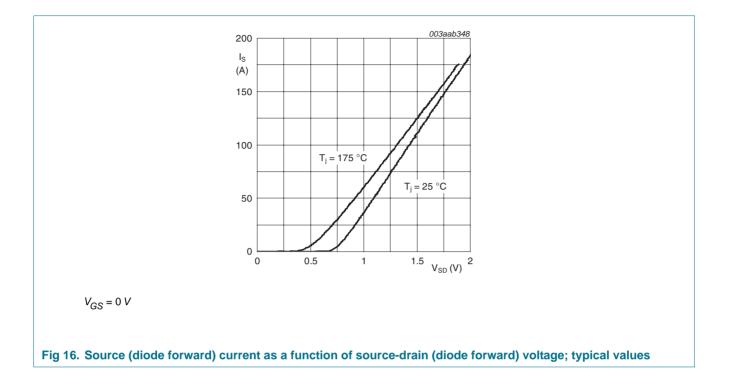
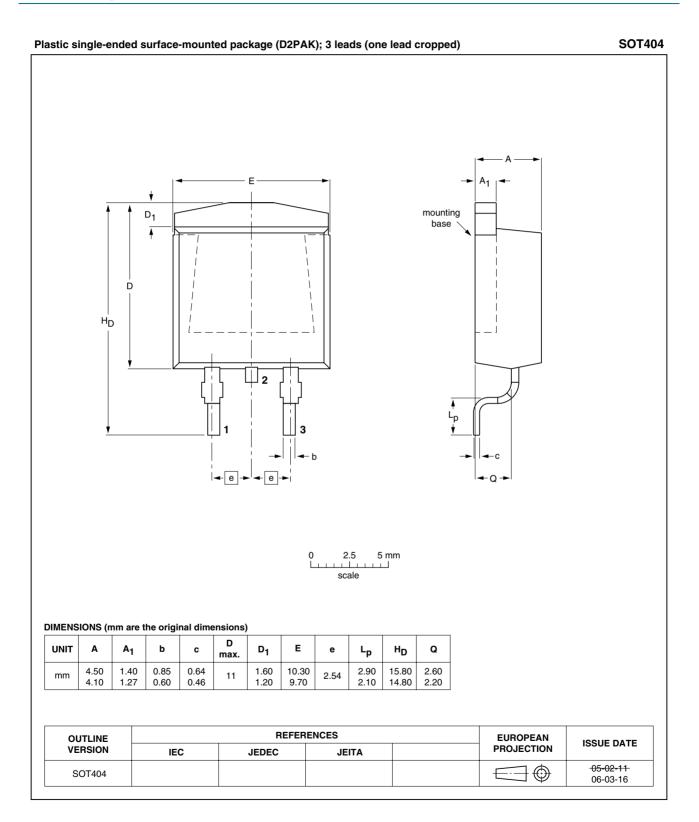

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _f	fall time	$\label{eq:VDS} \begin{array}{l} V_{DS} = 25 \ V; \ R_L = 1.2 \ \Omega; \\ V_{GS} = 10 \ V; \ R_G(ext) = 10 \ \Omega \end{array}$	-	134	-	ns
L _D	internal drain inductance	from upper edge of drain mounting base to center of die	-	2.5	-	nH
L _S	internal source inductance	from source lead to source bonding pad	-	7.5	-	nH

Table 6. Characteristics ...continued



N-channel TrenchMOS standard level FET

7. Package outline

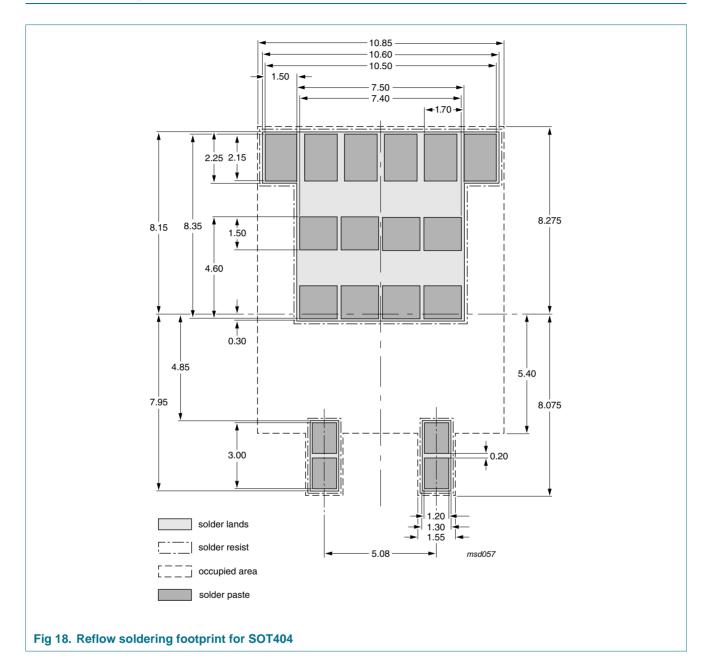


Fig 17. Package outline SOT404 (D2PAK)

BUK761R8-30C_2

N-channel TrenchMOS standard level FET

8. Soldering

N-channel TrenchMOS standard level FET

9. Revision history

Table 7. Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK761R8-30C_2	20070820	Product data sheet	-	BUK761R8-30C_1
Modifications: • The format of this data sheet has been redesigned to comply with the ner guidelines of NXP Semiconductors.		vith the new identity		
	 Legal texts 	have been adapted to the	new company name whe	ere appropriate.
BUK761R8-30C_1	20060725	Product data sheet	-	-

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

11. Contact information

For additional information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, send an email to: salesaddresses@nxp.com

N-channel TrenchMOS standard level FET

12. Contents

1	Product profile 1
1.1	General description 1
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 5
6	Characteristics 5
7	Package outline 11
8	Soldering 12
9	Revision history 13
10	Legal information 14
10.1	Data sheet status 14
10.2	Definitions 14
10.3	Disclaimers 14
10.4	Trademarks 14
11	Contact information 14
12	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 August 2007 Document identifier: BUK761R8-30C_2

All rights reserved.