STK433-890N-E

Thick-Film Hybrid IC 4ch class-AB Audio Power IC 80W×4ch

Overview

The STK433-890N-E is 4 channels class-AB audio frequency power amplifier hybrid IC.

Application

• Audio Power amplifiers

Features

- Pin-to-pin compatible outputs ranging from 40W to 80W.
- Output load impedance: $R_L = 6\Omega$ recommended.
- Allows the use of predesigned applications for standby and mute circuit.

Series model

	STK433-040N-E	STK433-060N-E	STK433-130N-E								
Output1 (10%/1kHz)	$40W\times2ch$	$50W\times 2ch$	$150W \times 2ch$								
Output2 (0.4%/20Hz to 20kHz)	$25W\times2ch$	$35W\times 2ch$	$100W\times 2ch$								
Max. rating V _{CC} (quiescent)	±38V	±46V	±71.5V								
Max. rating V_{CC} (6 Ω)	±36V	±40V	±63V								
Recommended operating V _{CC} (6 Ω)	±24V	±27V	±44V								
Dimensions (excluding pin height)	47.0mm×25.	67.0mm×25.6mm×9.0mm									

	STK433-330N-E	STK433-840N-E	STK433-890N-E
Output1 (10%/1kHz)	$150W\times3ch$	$40W\times4ch$	$80W \times 4ch$
Output2 (0.4%/20Hz to 20kHz)	$100W\times 3\text{ch}$	25W imes 4ch	50W imes 4ch
Max. rating V _{CC} (quiescent)	±71.5V	±38V	±54V
Max. rating V _{CC} (6 Ω)	±63V	±36V	±47V
Recommended operating V _{CC} (6 Ω)	±44V	±25V	±34V
Dimensions (excluding pin height)	64.0mm×36.6mm×9.0mm	64.0mm×31.1mm×9.0mm	78.0mm×44.1mm×9.0mm

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $Tc = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V _{CC} max (0)	Non signal	±54	V
	V _{CC} max (1)	Signal, $R_L \ge 6\Omega$	±47	V
	V _{CC} max (2)	Signal, $R_L = 4\Omega$	±40	V
Minimum operation supply voltage	V _{CC} min		±10	V
#13 Operating voltage *5	VST OFF max	#13pin voltage	-0.3 to +5.5	V
Thermal resistance	өј-с	Per power transistor	2.1	°C/W
Junction temperature	Tj max	Both the Tj max and Tc max	150	°C
Operating substrate temperature	Tc max	conditions must be met.	125	°C
Storage temperature	Tstg		-30 to +125	°C
Allowable time for load short-circuit *4	ts	V_{CC} = ±34V, R _L = 6 Ω , f = 50Hz P _O = 50W, 1ch drive	0.3	s

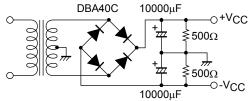
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.

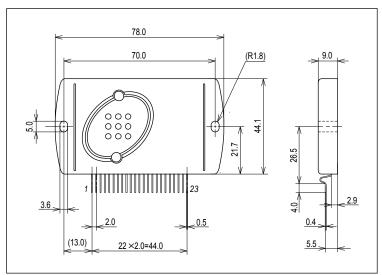
• Miniature package.

• Allowable load shorted time: 0.3 second

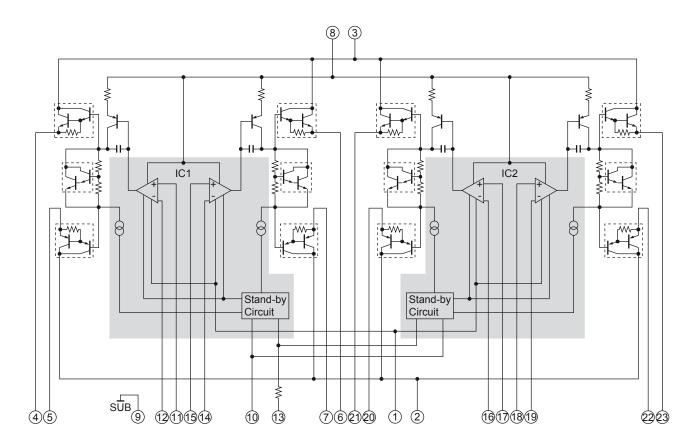

- pointing - initiation				-	onditions '		<i>// 0</i>	,	Ratings			
Parameter		Symbol	V _{CC} [V]	f [Hz]	P _O [W]	THD [%]		min	typ	max	Unit	
Output power	*1	P _O 1	±34	20 to 20k		0.6		47	50			
		P _O 2	±34	1k		10			80		W	
Total harmonic distortion	*1	THD 1	±34	20 to 20k						0.6		
		THD 2	±34	1k	5.0		VG=30dB		0.02		%	
Frequency characteristics	*1	f _L , f _H	±34		1.0		+0 -3dB		20 to 50k		Hz	
Input impedance		ri	±34	1k	1.0				55		kΩ	
Output noise voltage	*3	V _{NO}	±40				Rg=2.2kΩ			1.0	mVrms	
Quiescent current		Icco	±40				No load	90	150	210	mA	
Quiescent current at stand-b	у	ICST	±40				VST=0V			1.0	mA	
Neutral voltage		V _N	±40					-70	0	+70	mV	
#13 Stand-by ON threshold	*5	VST ON	±34				Stand-by		0	0.6	V	
#13 Stand-by OFF threshold	1 *5	VST OFF	±34				Operation	2.5	3.0	5.5	V	

Note

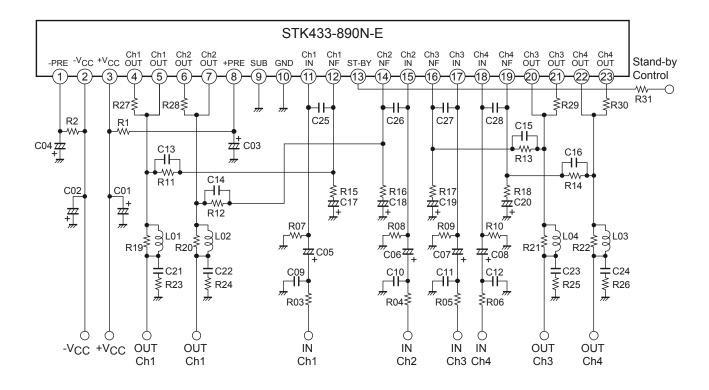
- *1. 1channel operation.
- *2. All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13 (Stand-By) pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5V to '#13 (Stand-By) pin'.
- * Please connect PreV_{CC} pin (#1 pin) with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive (TSE322SX).
- * Weight of HIC : (typ) 37.0g


Outer carton dimensions (W×L×H) : 452mm×325mm×192mm

Specified transformer power supply (Equivalent to MG-200)

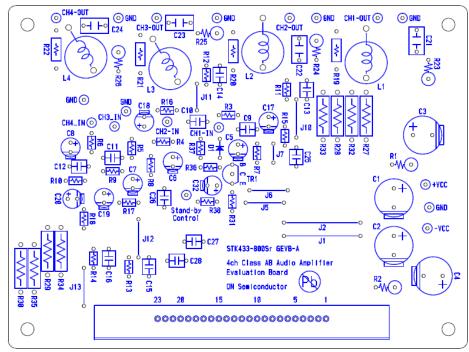

Package Dimensions

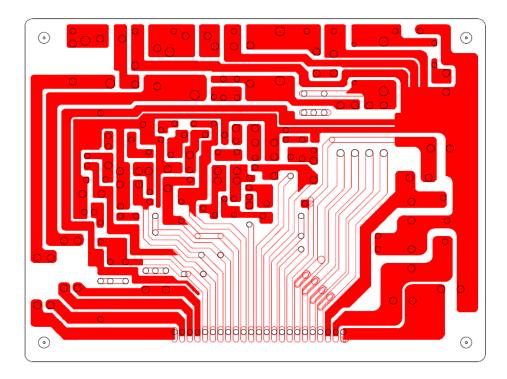
unit : mm (typ)



RoHS directive pass

Equivalent Circuit




Application Circuit

PCB Layout Example

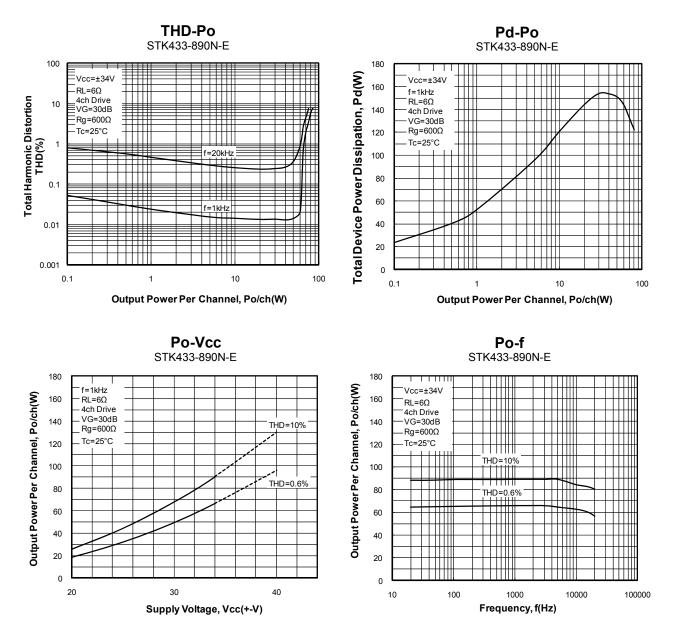
Top view

STK433-800NSr PCB PARTS LIST

PCB Name : STK433-800Sr GEVB - A

Location No.		RATING	Component
Lood			STK433-840N-E/890N-E
Hybrid IC#1 Pin Position		-	1
R01, R02		100Ω, 1W	0
R03, R04, R05, R06		1kΩ, 1/6W	0
R07, R08, R09, R10,	, R11, R12, R13, R14	56KΩ, 1/6W	0
R15, R16, R17, R18		1.8KΩ, 1/6W	0
R19, R20, R21, R22		4.7Ω, 1/4W	0
R23, R24, R25, R26		4.7Ω, 1W	0
R27, R28, R29, R30		0.22Ω, 5W	0
R32, R33, R34, R35		Jumper	Short
C01, C02, C03, C04		100μF, 100V	0
C05, C06, C07, C08		2.2μF, 50V	0
C09, C10, C11, C12		470pF, 50V	0
C13, C14, C15, C16		5pF, 50V	0
C17, C18, C19, C20		10μF, 16V	0
C21, C22, C23, C24		0.1µF, 50V	0
C25, C26, C27, C28		100pF, 50V	0
L01, L02, L03, L04		ЗµН	0
	Tr1	VCE \geq 50V, IC \geq 10mA	0
	D1	Di	0
Stand-By	R31	1.3kΩ, 1/6W	0
Control	R36	33kΩ, 1/6W	0
Circuit	R37	1kΩ, 1/6W	0
	R38	2kΩ, 1/6W	0
	C32	33μF, 10V	0
J1,J2,J5,J6,J7,J10,J	11,J12,J13	Jumper	0
		-	
		-	
		-	

Recommended external components


STK433-840N-E/890N-E

Parts	Recommended		Above	Below					
Location	value	Circuit purpose	Recommended value	Recommended value					
R01, R02	100Ω/1W	Resistance for Ripple filters. (Fuse resistance is recommended. Ripple filter is constituted with C03, C04.)	Short-through current may decrease at high frequency.	Short-through current may increase at high frequency.					
R03,R04,R05, R06	1kΩ	Resistance for input filters.	-	-					
R07,R08,R09, R10	56kΩ	Input impedance is determined.	Output neutral voltage (VN) shift. (It is referred that R07=R11, R08=R12, R09=R13, R10=R14)						
R11,R12,R13, R14	56kΩ	Voltage Gain (VG) is determined with R15, R16, R17, R18	-	-					
R15,R16,R17, R18	1.8kΩ	Voltage Gain (VG) is determined with R11, R12, R13, and R14. (As for VG, it is desirable to set up by R15, R16, R17, and R18.)	It may oscillate. (Vg < 30dB)	With especially no problem					
R19,R20,R21, R22	4.7Ω	Resistance for oscillation prevention.	-	-					
R23,R24,R25, R26	4.7Ω/1W	Resistance for oscillation prevention.	-	-					
R27,R28,R29, R30	0.22Ω ±10%, 5W	Output emitter resistor (Metal-plate Resistor is recommended.)	Decrease of Maximum output Power	It may cause thermal runaway					
R31	Note *4	Select Restriction resistance, for the impression voltage of '#13 rating.	(Stand-By) pin' must no	t exceed the maximum					
C01, C02	100µF/100V	 Capacitor for oscillation prevention. Locate near the HIC as much as possible. Power supply impedance is lowered and stable operation of the IC is carried out. (Electrolytic capacitor is recommended.) 	-	-					
C03,C04	100µF/100V	 Decoupling capacitor The Ripple ingredient mixed in an input side Is removed from a power supply line. (Ripple filter is constituted with R01, R02.) 	The change in the Ripp an input side from a por	-					
C05,C06,C07, C08	2.2µF/50V	Input coupling capacitor. (For DC current prevention.)		-					
C09,C10,C11, C12	470pF	 Input filter capacitor A high frequency noise is reduced with the filter constituted by R03, R04, R05, R06. 		-					
C13,C14,C15, C16	5pF	Capacitor for oscillation prevention.	It may oscillate.						
C17,C18,C19, C20	10μF/10V	Negative feedback capacitor. The cutoff frequency of a low cycle changes. (fL = $1/(2\pi \cdot C17 \cdot R15)$)	The voltage gain (VG) of low frequency is extended. However, the pop noise at the time of a power supply injection also becomes large.	The voltage gain (VG of low frequency decreases.					
C21,C22,C23, C24	0.1µF	Capacitor for oscillation prevention.	It may oscillate.						
C25,C26,C27, C28	100pF	Capacitor for oscillation prevention.	It may oscillate.						
L01,L02,L03, L04	3μΗ	Coil for oscillation prevention.	With especially no problem	It may oscillate.					

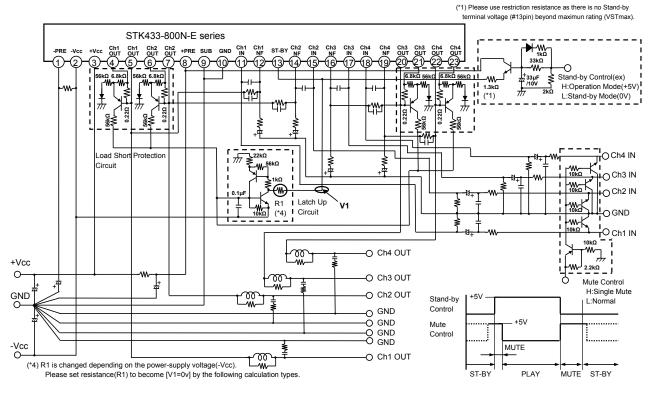
Pin Layout [STK433-000N/-100N/-800Nsr Pin Layout]

[51K455-000N/-100N/-800]	181	1 III	Ldy	out				1				1				1							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15								
(Size) 47.0mm×25.6mm×9.0mm						2c	h clas	sAB/	2.00r	nm													
STK433-040N 40W/JEITA	-	-	+	0	0	0	0	+			Ι	Ν	S	Ν	Ι								
STK433-060N 50W/JEITA	Ρ	V	V	U	U	U	U	Р	S	G	Ν	F	Т	F	Ν								
	R	С	С	Т	Т	Т	Т	R	U	Ν	/	/	A	1	/								
	Е	С	С	/	/	/	/	E	В	D	С	C	N	С	С								
(Size) 67.0mm×25.6mm×9.0mm				С Н	С Н	С Н	С Н				Н 1	H 1	D 	Н 2	Н 2								
STK433-130N 150W/JEITA				1	1	2	2						В										
				+	-	+	-						Υ										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
(Size) 64.0mm×31.1mm×9.0mm										4cl	h clas	sAB/	2.00r	nm									
STK433-840N 40W/JEITA	-	-	+	0	0	0	0	+			I	Ν	S	Ν	1	Ν	Ι	Ι	Ν	0	0	0	0
	Ρ	V	V	U	U	U	U	Р	s	G	Ν	F	т	F	Ν	F	Ν	Ν	F	U	U	U	U
	R	С	С	Т	Т	Т	Т	R	U	Ν	1	1	А	1	/	1	1	1	/	Т	Т	Т	Т
	Е	С	С	/	/	1	1	Е	В	D	С	С	Ν	С	С	С	С	С	С	1	1	/	/
(Size) 78.0mm×44.1mm×9.0mm				С	С	С	С				Н	Н	D	Н	Н	Н	Н	Н	Н	С	С	С	С
				H	H	Н	Н				1	1		2	2	3	3	4	4	Н	Н	H	H
STK433-890N 80W/JEITA				1+	1	2+	2						B Y							3	3 +	4	4+
				Ŧ	-	Ŧ	-						T							-	T	-	Ŧ

Characteristic of Evaluation Board

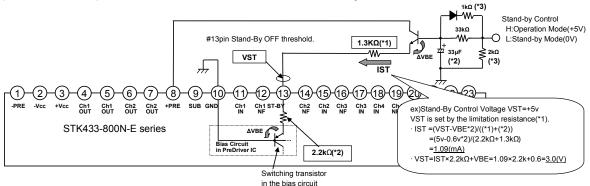
A Thermal Design Tip For STK433-890N-E Amplifier

[Thermal Design Conditions]
The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be
determined as follow:
(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C
$Pd \times \theta c - a + Ta < 125^{\circ}C $ (1)
Where Ta : the ambient temperature for the system
(Condition 2) The junction temperature of each power transistor should not exceed 150°C
$Pd \times \theta c - a + Pd/N \times \theta j - c + Ta < 150^{\circ}C^{\circ} C^{\circ} C^$
Where N : the number of transistors (two for 1 channel, ten for channel)
θ j-c : the thermal resistance of each transistor (see specification)
Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd)
divided by the number of transistors (N).
From the formula (1) and (2), we will obtain:
$\theta c-a < (125 - Ta)/Pd$ (1)
$\theta c-a < (150 - Ta)/Pd - \theta j-c/N$ (2)
The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.
Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.
[Example of Thermal Design]
Generally, the power consumption of actual music signals are being estimated by the continuous signal of
$1/8 P_{O}$ max. (Note that the value of $1/8 P_{O}$ max may be varied from the country to country.)
(Sample of STK433-890N-E ; 50W×4ch)
If V _{CC} is $\pm 34V$, and R _L is 6 Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;
$Pd = 99.0W$ (at 6.25W output power, 1/8 of P_O max)
There are eight (8) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is
2.1°C/W. If the ambient temperature (Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-
sink should be;
From (1)' $\theta c - a < (125 - 50)/99.0$
< 0.76
$From (2)^2$, $h_{0,0} < (150 - 50)/00, 0 = 2.1/8$


From (2)' $\theta c - a < (150 - 50)/99.0 - 2.1/8$ < 0.75

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be 0.75°C/W.

[Note]


Above are reference only. The samples are operated with a constant power supply. Please verify the conditions when your system is actually implemented.

STK433-800 series Stand-by Control & Mute Control & Load-Short Protection Application

[STK433-800N-E series Stand-By Control Example]

- [Feature]
- The pop noise which occurs to the time of power supply on/off can be improved substantially by recommendation Stand-By Control Application.
- Stand-By Control can be done by additionally adjusting the limitation resistance to the voltage such as micom, the set design is easy.
- (Reference circuit) STK433-800N-E series test circuit To Stand-By Control added +5V.

[Operation explanation] #13pin Stand-By Control Voltage VST

(1) Operation Mode

The switching transistor in the bias circuit turns on and places the amplifier into the operating mode, when 13pin (VST) voltage added above 2.5V (typ 3.0V).

(2) Stand-By Mode

When 13pin (VST) voltage is stopped (= 0V), the switching transistor in the bias circuit turn off, placing the amplifier into the standby mode.

- (*1) The current limiting resistor must be used to ensure that stand-by pin (13pin) voltage does not exceed its maximum rated value VST max.
- (*2) The pop noise level when the power is turned on can be reduced by setting the time constant with a capacitor in operating mode.
- (*3) Determines the time constant at which the capacitor (*2) is discharged in stand-by mode.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK433-890N-E	SIP23 (Pb-Free)	25 / Bulk Box

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.