ON Semiconductor®

http://onsemi.com

CMOS LSI
1-Cell Li+ (lithium-ion)

Battery Monitor IC

Overview

The LC709202F is an IC that measures the remaining power level of 1-cell lithium-ion (Li+) batteries used for a portable equipment etc.

This product is able to reduce a fuel gauge errors by implementing its unique correction technology for measurement value of battery temperature and voltage.

It is possible for this to realize high precision for measurement in battery power measurement IC that does not need a current sensing resistor. ($\pm 3\%$ under certain conditions)

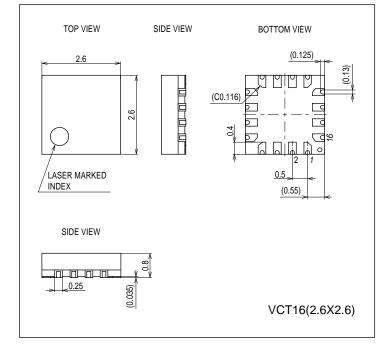
Applications

- Wireless Handsets
- Smartphones/PDA devices
- MP3 players
- digital cameras
- Portable Game Players
- USB-related devices

Features

- Accuracy of remaining battery power level measurement
 - ±3% (at an ambient operating temperature of 0°C to 50°C)

Note: The accuracy above is the value of an experiment using the evaluation board.


- Precision ±7.5mV/Cell Voltage Measurement
- A current sensing resistor is unnecessary.
- Alert function
- Interface
 - I²C Interface (up to 400 kHz supported)
- Low power consumption
 - Normal Mode : 15μASleep Mode : 0.1μA
- Corresponding battery
 - Model to be used depending on the material of the electrode of the battery pack + is different.

LC709202F-01: ternary system LC709202F-02: nickelic acid

Package Dimensions

unit: mm (typ)

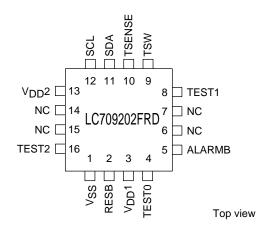
3318

^{*} I²C Bus is a trademark of Philips Corporation.

■ Ports

I²C communication pin
 Battery temperature reading control pin
 Analog voltage input pin for battery temperature
 (TSW)
 (TSENSE)

External alarm / Interrupt for Low-Battery warning
 Reset pin
 1 (ALARMB)
 1 (RESB)

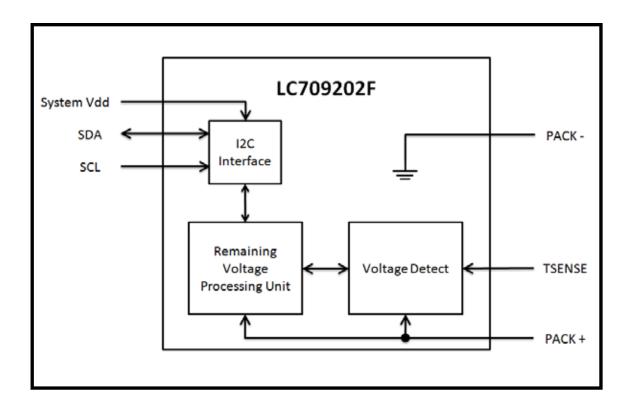

Reset pinTEST pin

• TEST pin 3 (TEST0, TEST1, TEST2)
• Power supply pin 3 (VSS, VDD1, VDD2)

■ Package form

• VCT16 (2.6×2.6) : Lead-free type

Pin Assignment



VCT16 (2.6×2.6) "Lead-free Type"

Pin Function

VCT16	Pin Name	I/O	Description
1	V _{SS}	-	Connect to the - terminal of the battery.
2	RESB	1	Reset pin
3	V _{DD} 1	-	Connect to the + terminal of the battery.
4	TEST0	I	Test pin
			*Connect to V _{SS} .
5	ALARMB	0	Alert indication. An active low output used to indicate specified condition thresholds have been met.
			*When you do not use an alert function, please connect with V _{SS} .
8	TEST1	0	Set "OPEN"
9	TSW	0	Battery temperature reading control pin
			*Set high when reading in the temperature, held low at other times.
10	TSENSE	1	Battery temperature analog voltage input pin
11	SDA	I/O	I ² C data pin
12	SCL	I/O	I ² C clock pin
13	V _{DD} 2	i	+ power pin for I ² C-Bus communication pin(SDA,SCL)
16	TEST2	0	Set "OPEN"

Block Diagram

Absolute Maximum Ratings at Ta=25°C, V_{SS} =0V

	0					Specification	l	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	Unit
Maximum supply voltage	V _{DD} max	V _{DD} 1, V _{DD} 2			-0.3		+6.5	
Input voltage	V _I (1)	RESB, TSENSE			-0.3		V _{DD} 1 +0.3	
Output voltage	V ₀ (1)	TSW			-0.3		V _{DD} 1 +0.3	V
	V ₀ (2)	ALARMB			-0.3			
Input/output voltage	V _{IO} (1)	SDA, SCL			-0.3		+5.5	
Allowable power dissipation	Pd max	VCT16	Ta=-40 to+85°C				55	mW
Operating ambient temperature	Topr				-40		+85	°C
Storage ambient temperature	Tstg				-55		+125	ر

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at Ta= -40 to +85°C, V_{SS} =0V

			, 5	2					
Danamatan	O. make al	Dia /Damanda	Conditions	O a life and		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Operating supply voltage	V _{DD} (1)	V _{DD} 1			2.5		4.5		
High level input	V _{IH} (1)	TSENSE		2.5 to 4.5	0.70V _{DD} 1		V _{DD} 1		
voltage	V _{IH} (2)	RESB		2.5 to 4.5	0.75V _{DD} 1		V _{DD} 1		
	V _{IH} (3)	SDA, SCL	V _{DD} 2=1.6V to 5.5V	2.5 to 4.5	0.70V _{DD} 2		V _{DD} 2	V	
Low level input	V _{IL} (1)	TSENSE		2.5 to 4.5	V _{SS}		0.25V _{DD} 1		
voltage	V _{IL} (2)	RESB		2.5 to 4.5	V _{SS}		0.25V _{DD} 1		
	V _{IL} (3)	SDA, SCL	V _{DD} 2=1.6V to 5.5V	2.5 to 4.5	V _{SS}		0.30V _{DD} 2		

Electrical Characteristics at Ta= -40 to +85°C, V_{SS} =0V

	0	D' /D I	0 - 10			Specification		11.3	
Parameter	Symbol	Pin/Remarks	Conditions V _{DD} [V]		min typ		max	Unit	
High level input current	I _{IH} (1)	RESB	V _{IN} =V _{DD} 1 (including output transistor off leakage current)	2.5 to 4.5			1		
	I _{IH} (2)	SDA, SCL	V _{IN} =V _{DD} 2 V _{DD} 2=1.6V to 5.5V (including output transistor off leakage current)	2.5 to 4.5			1	μΑ	
Low level input current	I _{IL} (1)	RESB	VIN=VSS (including output transistor off leakage current)	2.5 to 4.5	-1				
	I _{IL} (2)	SDA, SCL	V _{IN} =V _{SS} V _{DD} 2=1.6V to 5.5V (including output transistor off leakage current)	2.5 to 4.5	-1				
High level output	V _{OH} (1)	TSW	I _{OH} =-0.4 mA	3.0 to 4.5	V _{DD} -0.4				
voltage	V _{OH} (2)		I _{OH} =-0.2 mA	2.5 to 4.5	V _{DD} -0.4				
Low level output	V _{OL} (1)	TSW,	I _{OL} =3.0 mA	3.0 to 4.5			0.4		
voltage	V _{OL} (2)	ALARMB, SDA, SCL	I _{OL} =1.3 mA	2.5 to 4.5			0.4	V	
Hysteresis	VHYS(1)	RESB		2.5 to 4.5		0.1V _{DD} 1			
voltage	VHYS(2)	SDA, SCL		2.5 to 4.5		0.1V _{DD} 2			
Pin capacitance	СР	All pins	Pins other than the pin under test VIN=VSS Ta=25°C	2.5 to 4.5		10		pF	
Consumption	I _{DD} (1)	V _{DD} 1	Normal Mode	2.5 to 4.5		15	26		
current (Note 1)	I _{DD} (2)	1	Auto Mode	2.5 to 4.5		2 to 15	4 to 26	μΑ	
, ,	I _{DD} (3)		Sleep Mode	2.5 to 4.5		0.1	5		
Voltage	V _{ME} (1)	V _{DD} 1	Ta= +25°C	3.6	-7.5		+7.5		
measurement accuracy	V _{ME} (2)		Ta= -20°C to +70°C	2.5 to 4.5	-20		+20	mV/cell	

Note 1: Consumption current is a value in the range of -20°C to +70°C

 $\mbox{I}^2\mbox{C}$ Slave Characteristics at Ta=-40 to+85°C, $V_{SS}\!\!=\!\!0V$

P	0	D: /D 1	0 - 10		Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	max	unit
Clock frequency	TSCL	SCL				400	kHz
Bus free time between STOP condition and START condition	TBUF	SCL, SDA	See Fig. 1.		1.3		μs
Hold time (repeated) START condition First clock pulse is generated after this interval	THD:STA	SCL, SDA	See Fig. 1.		0.6		μs
Repeated START condition setup time	TSU:STA	SCL, SDA	See Fig. 1.	2.5 to 4.5	0.6		μs
STOP condition setup time	TSU:STO	SCL, SDA	See Fig. 1.	2.0 to 1.0	0.6		μs
Data hold time	THD:DAT	SCL, SDA	See Fig. 1.]	0	0.9	μs
Data setup time	TSU:DAT	SCL, SDA	See Fig. 1.		100		ns
Clock low period	TLOW	SCL			1.3		μs
Clock high period	THIGH	SCL			0.6		μs
Clock/data fall time	TF	SCL, SDA]	20 + 0.1C _B	300	ns
Clock/data rise time	TR	SCL, SDA]	20 + 0.1C _B	300	ns

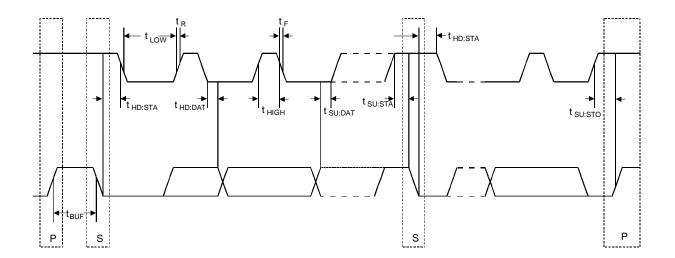


Figure 1 I²C Timing

Discharge Characteristics

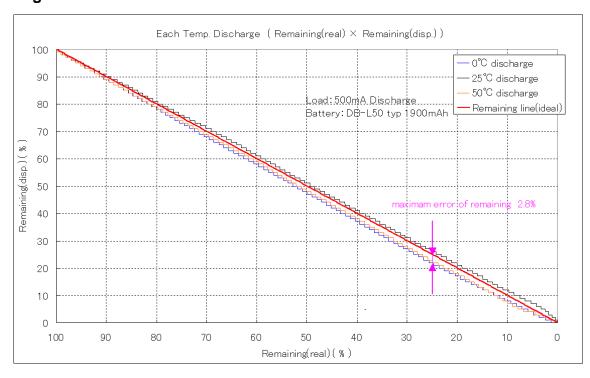


Figure 2 Discharge Characteristics by Temperature Change

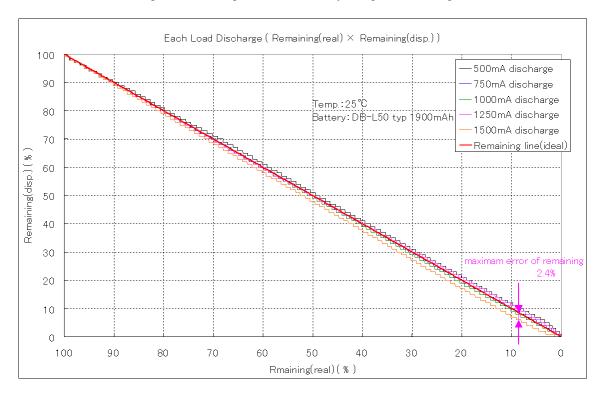


Figure 3 Discharge Characteristics by Load Change

Communication Protocol

Communication protocol type: I²C

Frequency: 400 kHz Address: 0x16

Bus Protocols S

S : Start Condition
Sr : Repeated Start Condition
Rd : Read (bit value of 1)
Wr : Write (bit value of 0)
A : ACK (bit value of 0)
N : NACK (bit value of 1)
P : Stop Condition

CRC-8 : Slave Address to Last Data (CRC-8-ATM: ex.3778mV: 0x16,0x09,0x17,0xC2,0x0E □ 0x86)

: Master-to-Slave : Slave-to-Master ... : Continuation of protocol

Read Word Protocol

 iu vvoi c	1 1 0 0 0 0 0 1						
S	Slave Address	Wr	A	A Command Code			
Sr	Slave Address	Rd	A	Data Byte Low	Α	Data Byte High	[
A	CRC-8	N	P				

Write Word Protocol

S	Slave Addre	ess	Wr	A	Comma	nd Code	A				
Da	ta Byte Low	A		Data Byte	High	A		CRC-8	Α	P	ı

Access	Slave Functions	Command Code	Range		Unit	
	Cell Temperature	0x08	0 to 65535	i	0.1°K (0.0°C = 2732)	
	Cell Voltage	0x09	0 to 65535	mV		
	Current	0x0A	-32768 to 32767		mA	
	Adjustment Pack 8	0x0B	0 to 255		Value	
	Relative State Of Charge	0x0D	0 to 100		%	
	Remaining Capacity	0x0F	0 to 1000		mAh	
	Full Charge Capacity	0x10	1000		mAh	
	IC Version	0x11	0 to 65535		Version	
Read	Adjustment Thermistor	0x12	0 to 255		Value	
Reau	Hot Start Sleep Mode Auto Mode	0x13	bit 0 bit 1 bit 2		disable: 0 or enable: 1	
	Alarm Low Battery	0x14		to 250 to 100	20mV %	
	Adjustment B	0x15	0 to 65535		В	
	System Mode	0x16	bit 0to 3:	data 0 data 1 data 2	Nomal Mode Sleep Mode Auto Mode	
			bit 4to7 : data	Auto deep		
	Adjustment Pack 0	0x00	0 to 32767	'	Value	
ļ	Adjustment Pack 1	0x01	0 to 32767	'	Value	
	Adjustment Pack 2	0x02	0 to 32767	,	Value	
	Adjustment Pack 3	0x03	0 to 32767	,	Value	
	Adjustment Pack 4	0x04	0 to 32767	•	Value	
	Adjustment Pack 5	0x05	0 to 32767	•	Value	
	Set Relative State Of Charge		Low: 0	0xA5 to 100		
Write	Adjustment Pack 8		Low: 0	0x5A to 255	- Value	
	Adjustment Thermistor	0x08		0xAA to 255	Value	
	Hot Start Sleep Mode Auto Mode		High: Low:	bit 0 bit 1 bit 2	disable: 0 or enable: 1	
ļ	Initial Relative State Of Charge	0x09	0xAA55			
	Alarm Low Battery	0x0A		to 250 to 100	20mV(activate under) % (activate under)	
ľ	Adjustment B	0x0B	0 to 65535		В	
	Cell Temperature	0x0C	2532 to 3332 (I2C Write Mode) 0xAA55 (Thermistor Mode)		0.1°K (0.0°C= 2732)	

Application Circuit Example

Figure 4 Example of an application schematic using LC709202F (not use temperature detection function)

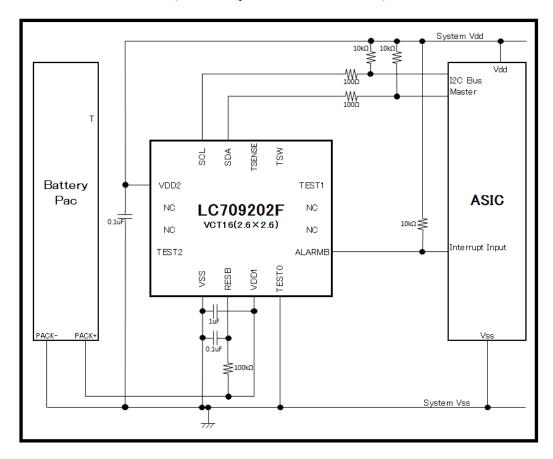
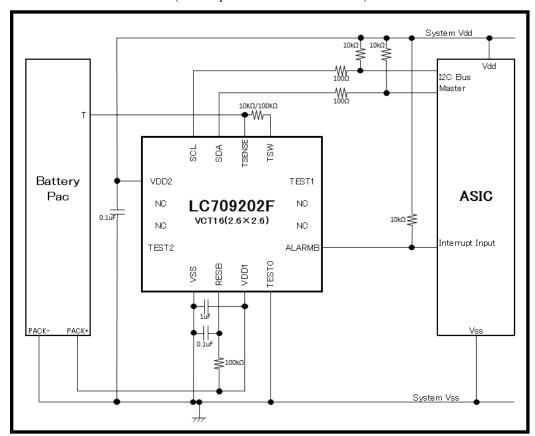



Figure 5 Example of an application schematic using LC709202F (use temperature detection function)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa