NCV890204GEVB

NCV890204 Evaluation Board User's Manual

Description

The NCV890204 is a fixed-frequency, monolithic, Buck switching regulator intended for Automotive, battery-connected applications that must operate with up to a 36 V input supply. The regulator is suitable for systems with low noise and small form factor requirements often encountered in automotive driver information systems. The NCV890204 is capable of converting the typical 4.5 V to 18 V automotive input voltage range to outputs as low as 3.3 V at a constant switching frequency above the sensitive AM band, eliminating the need for costly filters and EMI countermeasures. A Reset pin signals when the output is in regulation, and a pin is provided to adjust the delay before the RSTB signal goes high. The NCV890204 also provides several protection features expected in Automotive power supply systems such as current limit, short circuit protection, and thermal shutdown. In addition, the high switching frequency produces low output voltage ripple even when using small inductor values and an all-ceramic output filter capacitor - forming a space-efficient switching regulator solution.

Figure 1. NCV890204 Evaluation Board

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

EVAL BOARD USER'S MANUAL

Key Features

- Internal N-channel Power Switch
- Low V_{IN} Operation Down to 4.5 V
- High V_{IN} Operation to 36 V
- Withstands Load Dump to 40 V
- 2 MHz Free-running Switching Frequency
- Adjustable Spread Spectrum
- Reset with Adjustable Delay
- Logic level Enable Input Can be Directly Tied to Battery
- 2.0 A (min) Cycle-by-Cycle Peak Current Limit
- Short Circuit Protection enhanced by Frequency Foldback
- $\pm 1.75 \%$ Output Voltage Tolerance
- Output Voltage Adjustable Down to 0.8 V
- 1.4 Millisecond Internal Soft-Start
- Thermal Shutdown (TSD)
- Low Shutdown Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- Wettable Flanks DFN (Pin Edge Plating)
- These Devices are Pb -Free and are RoHS Compliant

Typical Applications

- Audio, Infotainment, Safety - Vision Systems, Instrumentation

Figure 2. NCV890204 Block Diagram

TYPICAL APPLICATION

Figure 3. Typical Application

NCV890204GEVB

Table 1. EVALUATION BOARD TERMINALS

Pin Name	
VIN	Positive dc Input Voltage
GND	Common dc Return
VOUT	Positive dc Output Voltage
EN	Master Enable Input
RST3B	Reset with Adjustable Delay

Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND)

Rating	Value	Unit
Dc Supply Voltage (VIN, EN)	-0.3 to 40	V
Dc Supply Voltage (RSTB)	-0.3 to 6	V
Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. ELECTRICAL CHARACTERSITICS

Characteristic	Conditions	Typical Value	Unit
REGULATION			
Output Voltage (VOUT)		5.0	V
Line Regulation (VOUT)	I ${ }_{\text {OUT }}=1.0 \mathrm{~A}$	0.1	\%
Load Regulation (VOUT)	$\mathrm{V}_{\text {IN }}=13.2 \mathrm{~V}$	0.1	\%
SWITCHING			
Switching Frequency		2.0	MHz
Soft-start Time		1.4	ms
CURRENT LIMIT			
Peak Current Limit (VOUT)	$\mathrm{EN}=5 \mathrm{~V}$	3.25	A

Input Undervoltage Lockout (UVLO)	$\mathrm{V}_{\text {IN }}$ Decreasing	3.4	V
Thermal Shutdown	T_{J} Rising	170	${ }^{\circ} \mathrm{C}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 4. NCV890204GEVB Evaluation Board Schematic

NCV890204GEVB

OPERATIONAL GUIDELINES

1. Connect a dc input voltage, within the 6.0 V to 36 V range, between VIN and GND.
2. Connect a dc enable voltage, within the 2.0 V to 36 V range, between EN and GND. This will
power up the switcher. The VOUT signal should be 3.3 V .
3. Add a load to VOUT - up to 2.0 A .

Figure 5. NCV890204 Board Connections

ADDITIONAL GUIDELINES

Output Voltage Selection

The voltage output for the switcher is adjustable and can be set with a resistor divider. The FB reference for the switcher is 0.8 V .

Use the following equation:

$$
R_{\text {UPPER }}=R_{\text {LOWER }} \frac{V_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{FB}}}{\mathrm{~V}_{\mathrm{FB}}}
$$

Some common setups are listed below:

Desired Output (V)	VREF (V)	$\mathbf{R}_{\text {UPPER }}$ $\mathbf{(k \Omega , 1 \%)}$	$\mathbf{R}_{\text {LOWER }}$ $\mathbf{(k \Omega , 1 \%)}$
1.2	0.8	5.11	10.0
1.5	0.8	8.87	10.0
1.8	0.8	12.7	10.0
2.5	0.8	21.5	10.0
3.3	0.8	31.6	10.0
5.0	0.8	52.3	10.0

Spread Spectrum

In SMPS devices, switching translates to higher efficiency. Unfortunately, the switching leads to a much noisier EMI profile. We can greatly decrease some of the radiated emissions with some spread spectrum techniques. Spread spectrum is used to reduce the peak electromagnetic emissions of a switching regulator.

The spread spectrum used in the NCV890204 is an "up-spread" technique, meaning the switching frequency is spread upward from the 2.0 MHz base frequency. For example, a 5% spread means that the switching frequency is swept (spread) from 2.0 MHz up to 2.1 MHz in a linear fashion - this is called the modulation depth. The rate at which this spread takes place is called the modulation frequency. For example, a 10 kHz modulation frequency means that the frequency is swept from 2.0 MHz to 2.1 MHz in $50 \mu \mathrm{~s}$ and then back down from 2.1 MHz to 2.0 MHz in $50 \mu \mathrm{~s}$.

The modulation depth and modulation frequency are each set by an external resistor to GND. The modulation frequency can be set from 5 kHz up to 50 kHz using a resistor from the RMOD pin to GND. The modulation depth can be set from 3% up to 30% of the nominal switching frequency using a resistor from the RDEPTH pin to GND. Please see the curves below for typical values:

Figure 6. Modulation Frequency vs. RMOD Value

Figure 7. Modulation Depth vs. RDEPTH Value
Spread spectrum is automatically turned off when there is a short to GND or an open circuit on either the RMOD pin or the RDEPTH pin. Please be sure that the ROSC pin is an open circuit when using spread spectrum.

NCV890204GEVB

TYPICAL PERFORMANCE

Efficiency

Figure 8. Efficiency with a 3.3 V Output

Figure 9. Efficiency with a 5.0 V Output

Line Regulation

Figure 10. Line Regulation for a 3.3 V Output

Figure 11. Line Regulation for a 5.0 V Output

NCV890204GEVB

Load Regulation

Figure 12. Load Regulation with a 3.3 V Output

Figure 13. Load Regulation with a 5.0 V Output

SCHEMATIC

Figure 14. Schematic

PCB LAYOUT

NCV890204 Demo Board Rev. 1 - 02/10/14
TOP Layer

Figure 15. Top View

NCV890204 Demo Board Rev. 1 - 02/10/14 BOTTOM Layer (mirrored)

Figure 16. Bottom View

BILL OF MATERIALS

Table 4. BILL OF MATERIALS

Reference Designator(s)	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer's Part Number	Substitution Allowed
CBST, CDRV	2	CAP $10 \mu \mathrm{~F}$ 10 V CERAMIC X7R 0603	$0.1 \mu \mathrm{~F}$	10\%	603	Kemet	C0603C104K8RACTU	Yes
CCOMP	1	$\begin{gathered} \text { CAP CER } \\ 330 \mathrm{pF} 50 \mathrm{~V} \\ \text { COG } 0603 \end{gathered}$	330 pF	10\%	603	Murata Electronics North America	GCM1885C1H331JA16D	Yes
CDLY	1	$\begin{gathered} \text { CAP CER } \\ 0.47 \mu \mathrm{~F} 25 \mathrm{~V} \\ 10 \% \text { X7R } 0603 \end{gathered}$	$0.47 \mu \mathrm{~F}$	10\%	603	Murata Electronics North America	GCM188R71E474KA64D	Yes
CFLT1, CFLT2, CVIN1	3	$\begin{gathered} \text { CAP CER } \\ 4.7 \mu \text { F } 50 \text { V } \\ 10 \% \text { X7R } 1210 \end{gathered}$	$4.7 \mu \mathrm{~F}$	10\%	1210	Murata Electronics North America	GRM32ER71H475KA88L	Yes
COUT1, COUT2	2	$\begin{gathered} \text { CAP CER } \\ 10 \mu \mathrm{~F} 10 \mathrm{~V} \text { X7R } \\ 1206 \end{gathered}$	$10 \mu \mathrm{~F}$	10\%	1206	Murata Electronics North America	GRM31CR71A106KA01L	Yes
CVIN2	1	$\begin{gathered} \text { CAP CER } \\ 1.0 \mu \mathrm{~F} 50 \mathrm{~V} \\ \text { X5R } 0805 \end{gathered}$	$1.0 \mu \mathrm{~F}$	10\%	805	Murata Electronics North America	UMK212BJ105KG-T	Yes
DBST	1	DIODE SWITCH 200 mA 75 V SOD323	$75 \mathrm{~V} / 0.2 \mathrm{~A}$	N/A	SOD_323	ON Semiconductor	BAS16HT1G	No
DFW	1	$\begin{gathered} \text { DIODE } \\ \text { SCHOTTKY } \\ 4.0 \mathrm{~A} 40 \mathrm{~V} \text { SMB } \end{gathered}$	$40 \mathrm{~V} / 4.0 \mathrm{~A}$	N/A	SMB_DIODE	ON Semiconductor	NRVB440MFST1G	No
L1	1	$\begin{aligned} & \text { INDUCTOR } \\ & \text { POWER } 4.7 \mu \mathrm{H} \\ & \text { 4.5 A SMD } \end{aligned}$	$4.7 \mu \mathrm{H}$	4.5A	XAL4030-472	Coilcraft	XAL4030-472ME	No
L2*	1	RES 0.0Ω 1/4 W JUMP 1206 SMD	0Ω	5\%	1206	Yageo	RC1206JR-070RL	Yes
RCOMP	1	$\begin{aligned} & \text { RES } 6.98 \mathrm{k} \Omega \\ & 1 / 10 \mathrm{~W} 1 \% \\ & 0603 \mathrm{SMD} \end{aligned}$	$6.98 \mathrm{k} \Omega$	1\%	603	Vishay/Dale	CRCW06036K98FKEA	Yes
RFB1	1	RES 100Ω 1/10 W 1\% 0603 SMD	100Ω	1\%	603	Vishay/Dale	CRCW0603100RFKEA	Yes
RFB2	1	RES 31.6Ω 1/10 W 1\% 0603 SMD	31.6Ω	1\%	603	Vishay/Dale	CRCW060331R6FKEA	Yes
RRDEP, RRMOD, RRSTB	3	RES $10.0 \mathrm{k} \Omega$ OHM 1/10 W 1\% 0603 SMD	$10.0 \mathrm{k} \Omega$	1\%	603	Vishay/Dale	CRCW060310K0FKEA	Yes
ZFB1	1	CAP CER 4700 pF 50 V 10\% X7R 0603	4700 pF	10\%	603	Murata Electronics North America	GRM188R71H472KA01D	Yes
CSNB	1		Do Not Populate		603			Yes
RMIN1, RMIN2	2		Do Not Populate		1206			Yes
RSNB	1		Do Not Populate		603			Yes
```BST, COMP, DLY, FB, RDEP, RMOD, SW```	7	CIRCUIT PIN PRNTD .020"D $.425^{\prime \prime}$	Do Not Populate	N/A	TPA	Mill-Max Manufacturing Corp.	3128-2-00-15-00-00-08-0	Yes
GND1, GND2, VIN, VOUT	4	CONN JACK BANANA UNINS PANEL MOU	N/A	N/A	BANANA	Emerson Network Power Connectivity Soultions	108-0740-001	Yes

Table 4. BILL OF MATERIALS (continued)

Reference Designator(s)	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer's Part Number	Substitution Allowed
GND3-GND6	4	TERM SOLDER TURRET .219" .109"L	N/A	N/A	TURRET	Mill-Max Manufacturing Corp.	2501-2-00-44-00-00-07-0	Yes
EN, RSTB	2	PIN INBOARD 042" HOLE 1000/PKG	N/A	N/A	TP	Vector Electronics	K24C/M	Yes
NCV890204	1	1.2 A 2 MHz Automotive Buck Switching Regulator	NCV890204	N/A	12PINDFN4x4p65	ON Semiconductor	NCV890204MWR2G	No

*L2 is a placeholder footprint for an optional input inductor filter component. Boards are shipped with a shorting jumper installed to complete the input path.
NOTE: All devices are RoHS Compliant.

ON Semiconductor and (UiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

