NB7L1008MNG Evaluation Board User's Manual

Introduction

The NB7L1008 is a high performance differential 1:8 Clock/Data fanout buffer that operates up to 12 Gbps/7 GHz with a 2.5 V or 3.3 V power supply. ON Semiconductor has developed a "universal" QFN–32 evaluation board and configured it for the NB7L1008. This evaluation board was designed to provide a flexible and convenient platform to quickly evaluate, characterize and verify the operation of the NB7L1008.

- This evaluation board manual contains:
- Information on the NB7L1008 Evaluation Board
- Test and Measurement Setup Procedures

This manual should be used in conjunction with the device datasheet, which contains full technical details on the device specifications and operation.

Board Layout

The NB7L1008 Evaluation Board provides a high bandwidth, $50-\Omega$ controlled impedance environment and is implemented in one layer.

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

Layer Stack

L1 (Rogers)

High-performance SMA connectors are provided for all high-speed input & output signal access.

Evaluation Board Assembly Instructions

The QFN-32 evaluation board is designed for characterizing devices in a 50- Ω laboratory environment using high bandwidth equipment.

Output Loading/Termination

LVPECL Outputs

Table 1. DIFFERENTIAL INPUTS DRIVEN SINGLE - ENDED (Notes 1 & 2)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{IH}	Single – Ended Input High Voltage	V _{th} + 75	-	V _{CC}	mV
V _{IL}	Single – Ended Input Low Voltage	V _{EE}	-	V _{th} – 100	mV
V _{th}	Input Threshold Reference Voltage Range	V _{EE} + 1100	-	V _{CC} – 100	mV
V _{ISE}	Single – Ended Input Voltage (V _{IH} – V _{IL})	200	_	1200	mV

1. V_{th} , V_{IH} , V_{IL} and V_{ISE} parameters must be complied with simultaneously.

2. V_{th} is applied to the complementary input when operating in single-ended mode.

Table 2. DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (IN, INB) (Note 3)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{IHD}	Differential Input High Voltage	V _{EE} + 1100	-	V _{CC}	mV
V _{ILD}	Differential Input Low Voltage	V _{EE}	-	V _{IHD} – 100	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	100	-	1200	mV
I _{IH}	Input High Current	-150	40	+150	μΑ
IIL	Input Low Current	-150	5	+150	μΑ

3. $V_{IHD},\,V_{ILD},\,V_{ID}$ and V_{CMR} parameters must be complied with simultaneously.

If the input signals to the NB7L1008 require termination, internal 50- Ω resistors are provided via the VT pin and grounded using a SMA grounding plug then and should be stimulated with the appropriate voltage levels.

NOTE: For this evaluation board, VT is connected to ground, thus it can only be used for LVPECL inputs.

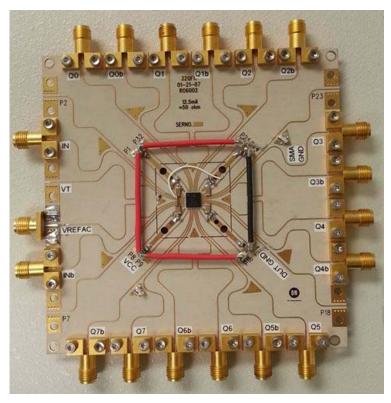


Figure 1. Test Board

- 1. Connect the appropriate power supplies to V_{CC}, DUTGND.
- 2. Connect a signal generator to the input SMA connectors. Setup input signal levels according to the device data sheet.
- 3. Connect a test measurement device to the device's output SMA connectors.
- NOTE: The test measurement device must contain $50-\Omega$ termination.

Table 3. NB7L1008, LVPECL INPUTS AND LVPECL OUTPUTS

Device Pin Power Supply Connector	Power Supply		
V _{CC}	V _{CC} = 2 V		
50 Ω Input	VT = 0 V		
DUTGND	DUTGND = V _{EE} = -0.5 V (for 2.5 V) and -1.3 V (for 3.3 V)		

Table 4. NB7L1008, CML INPUTS AND LVPECL OUTPUTS

Device Pin Power Supply Connector	Power Supply		
V _{CC}	V _{CC} = 2 V		
50 Ω Input	VT = V _{CC}		
DUTGND	DUTGND = V_{EE} = -0.5 V (for 2.5 V) and -1.3 V (for 3.3 V)		

Table 5. NB7L1008, LVDS INPUTS AND LVPECL OUTPUTS

Device Pin Power Supply Connector	Power Supply		
V _{CC}	$V_{CC} = 2 V$		
50 Ω Input	VT = Open		
DUTGND	DUTGND = V_{EE} = -0.5 V (for 2.5 V) and -1.3 V (for 3.3 V)		

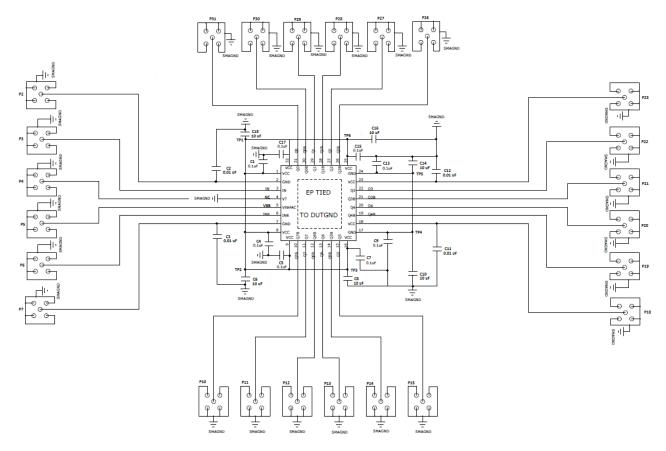


Figure 2. Schematic Drawing

Table 6. BILL OF MATERIALS

Components	Manufacturer	Description	Manufacturer Part Number	Web Site	
SMA Connector	Rosenberger	High Performance SMA Connector, Side Launch, Gold Plated	32K243-40ME3	http://www.rosenberger.de http://www.rosenbergerna.com	
SMA Connector	Johnson-Emerson	SMA Connector, Side Launch, Gold Plated	142-0701-801	http://www.digikey.com	
Surface Mount Test Points	Keystone*	SMT Compact Test Point	5016	http://www.keylco.com	
Chip Capacitor	AVC Corporation*	0603 0.1 μF ±10%	0603C104KAT2A	http://www.avxcorp.com	
Chip Capacitor	Kemet	1206 0.01 μF ±10%	C1206C103K5RACTU	http://www.newark.com	
Chip Capacitor	TDK	0603 0.1 μF ±10%	C3216X5R1H106K160AB	http://www.newark.com	
Evaluation Board	ON Semiconductor	QFN 32 Evaluation Board – 2–Layer		http://www.onsemi.com	
Device Samples	ON Semiconductor	NB7L1008MNG		http://www.onsemi.com	

*Components are available through most distributors, i.e. <u>www.newark.com</u>, <u>www.Digikey.com</u>

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deat

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative