Single and Dual Low Voltage, Rail-to-Rail Input and Output, Operational Amplifiers with Shutdown

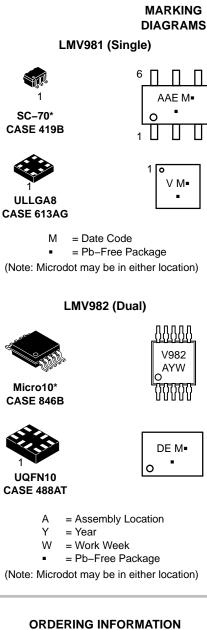
The LMV981 Single and LMV982 Dual are low-voltage operational amplifiers which can operate on single-sided power supplies (1.8 V to 5.0 V) with rail-to-rail input and output swing. Both devices come in small state-of-the-art packages and require very low quiescent current making them ideal for battery-operated, portable applications such as notebook computers and hand-held instruments. Rail-to-Rail operation allows for optimal signal-to-noise applications plus the small packages allow for closer placement to signal sources further enhancing overall signal chain performance.

The LMV981 Single and LMV982 Dual both have a shutdown pin that can be used to disable the device and further reduce power consumption. Shutdown is implemented by driving the SHDN Pin LOW.

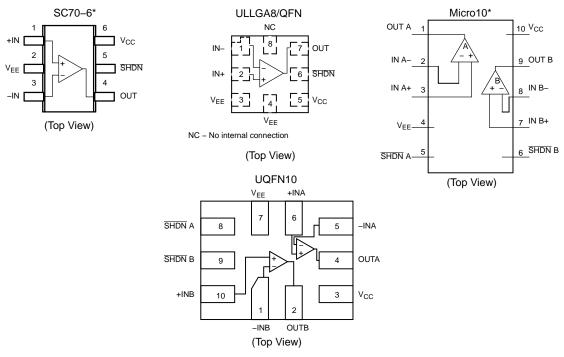
Features

- Specified at Single–Sided Power Supply: 1.8 V, 2.7 V, and 5 V
- Small Packages: LMV981 in a SC-70* and uLLGA (1.5mm x 1.5mm x 0.4mm) LMV982 in a Micro10* and uOFN (1.4mm x 1.8mm x 0.6 mm)
- No Output Crossover Distortion
- Extended Industrial Temperature Range: -40°C to +125°C
- Low Quiescent Current 210 µA, max per channel
- No Output Phase-Reversal from Overdriven Input
- These are Pb–Free Devices

Typical Applications


- Notebook Computers, Portable Battery–Operated Instruments, PDA's
- Active Filters, Supply-Current Monitoring

ON Semiconductor®


www.onsemi.com

See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.

*Consult sales for package availability

PIN CONNECTIONS

*Consult sales for package availability

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
VS	Supply Voltage (Operating Range $V_S = 2.7 V$ to 5.5 V)	5.5	V
V _{IDR}	Input Differential Voltage	\pm Supply Voltage	V
V _{ICR}	Input Common Mode Voltage Range	-0.5 to (V+) + 0.5	V
	Maximum Input Current	10	mA
t _{So}	Output Short Circuit (Note 1)	Continuous	
TJ	Maximum Junction Temperature (Operating Range –40°C to 85°C)	150	۵°
θ_{JA}	Thermal Resistance SC-70 ULLGA8 Micro10 UQFN10	280 340 200 300	°C/W
T _{stg}	Storage Temperature (SOT23-6)	-65 to 150	°C
	Mounting Temperature (Infrared or Convection –30 sec)	260	۵°

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ESD data available upon request.

 Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V- will adversely affect reliability.

1.8 V DC ELECTRICAL CHARACTERISTICS Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,	
V^+ = 1.8 V, V^- = 0 V, V_{CM} = V+/2, V_O = V ⁺ /2 and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm.	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	LMV981 (Single) (-40°C to +125°C)		1	6	mV
		LMV982 (Dual) (-40°C to +125°C)		1	7.5	
Input Offset Voltage Average Drift	TCVIO			5.5		μV/°C
Input Bias Current (Note 2)	Ι _Β	−40°C to +125°C		< 1		nA
Input Offset Current (Note 2)	I _{IO}	-40°C to +125°C		< 1		nA
Supply Current	I _{CC}	In Active Mode		75	185	μΑ
(per Channel)		-40°C to +125°C			205	
		In Shutdown: LMV981 (Single)			1.0	
		-40°C to +125°C			2.0	
		In Shutdown: LMV982 (Dual)			3.5	
		-40°C to +125°C			5.0	
Common Mode	CMRR	$0 \text{ V} \le \text{V}_{\text{CM}} \le 0.6 \text{ V}, 1.4 \text{ V} \le \text{V}_{\text{CM}} \le 1.8 \text{ V}$		40		dB
Rejection Ratio		– 40°C to +125°C		40		
		$-0.2 \text{ V} \le \text{V}_{\text{CM}} \le 0 \text{ V}, 1.8 \text{ V} \le \text{V}_{\text{CM}} \le 2 \text{ V}$		40		
Power Supply	PSRR	$1.8 \text{ V} \le \text{V}^+ \le 5 \text{ V}, \text{V}_{\text{CM}} = 0.5 \text{ V}$	50	70		dB
Rejection Ratio		-40°C to +125°C	50			
Input Common–Mode Voltage Range	Vсм	For CMRR \geq 50 dB and T _A = 25°C	V ⁻ - 0.2	-0.2 to 2.1	V+ + 0.2	V
		For CMRR \geq 50 dB and T _A = – 40°C to +85°C	V -		V+	1
		For CMRR \geq 50 dB and T _A = - 40°C to +125°C	V ⁻ + 0.2		V ⁺ - 0.2	
Large Signal Voltage	A _V	$\rm R_L$ = 600 Ω to 0.9 V, $\rm V_O$ = 0.2 V to 1.6 V, $\rm V_{CM}$ = 0.5 V	77	101		dB
Gain LMV981 (Single) (Note 2)		-40°C to +125°C	73			
		$\rm R_L$ = 2 k Ω to 0.9V, $\rm V_O$ = 0.2 V to 1.6 V, $\rm V_{CM}$ = 0.5 V	80	105		
		-40°C to +125°C	75			
Large Signal Voltage		$\rm R_L$ = 600 Ω to 0.9 V, V_O = 0.2 V to 1.6 V, V_{CM} = 0.5 V	75	90		
Gain LMV982 (Dual) (Note 2)		-40°C to +125°C	72			
		R_L = 2 k Ω to 0.9 V, V_O = 0.2 V to 1.6 V, V_{CM} = 0.5 V	78	100		
		-40°C to +125°C	75			
Output Swing	V _{OH}	R _L = 600 Ω to 0.9V, V _{IN} = \pm 100 mV	1.65	1.72		V
		−40°C to +125°C	1.63			
	V _{OL}	R _L = 600 Ω to 0.9V, V _{IN} = \pm 100 mV		0.077	0.105	
		-40°C to +125°C			0.12	
	V _{OH}	$R_L = 2 k\Omega$ to 0.9V, $V_{IN} = \pm 100 \text{ mV}$	1.75	1.77		
	-	-40°C to +125°C	1.74			
	V _{OL}	$R_L = 2 k\Omega$ to 0.9 V, $V_{IN} = \pm 100 \text{ mV}$		0.24	0.035	
		-40°C to +125°C			0.04	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Guaranteed by design and/or characterization.

1.8 V DC ELECTRICAL CHARACTERISTICS Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,	
V^+ = 1.8 V, V^- = 0 V, V_{CM} = V+/2, V_O = V+/2 and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm.	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Short Circuit Current	Ι _Ο	Sourcing, Vo = 0 V, V_{IN} = +100 mV	4.0	30		mA
		-40°C to +125°C	3.3			
		Sinking, Vo = 1.8V, V_{IN} = -100 mV	7.0	60		
		-40°C to +125°C	5.0			
Shutdown Enable Control	V _{SHDN}	Turn-on Voltage to Enable Device		1.0		V
		Turn-off Voltage to Shutdown Device		0.55		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Guaranteed by design and/or characterization.

1.8V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}$ C, V+ = 1.8 V, V- = 0 V, V_{CM} = 2.0 V, Vo = V+/2 and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm. Min/Max specifications are guaranteed by testing, characterization, or statistical analysis.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	SR	(Note 3)		0.35		V/μS
Gain Bandwidth Product	GBWP			1.4		MHz
Phase Margin	Θm			67		o
Gain Margin	Gm			7		dB
Input–Referred Voltage Noise	e _n	f = 50 kHz, V _{CM} = 0.5 V		60		nV/√Hz
Total Harmonic Distortion	THD	f = 1 kHz, A_V = +1, R_L = 600 Ω , V_O = 1 V_{PP}		0.023		%
Amplifier-to-Amplifier Isolation		(Note 4)		123		dB

3. Connected as voltage follower with input step from V- to V+. Number specified is the slower of the positive and negative slew rates.

4. Input referred, $R_L = 100 \text{ k}\Omega$ connected to V+/2. Each amp excited in turn with 1 kHz to produce $V_O = 3 \text{ V}_{PP}$. (For Supply Voltages < 3 V, $V_O = V+$).

2.7V DC ELECTRICAL CHARACTERISTICS Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,	
V^+ = 2.7 V, V^- = 0 V, V_{CM} = V+/2, V_O = V ⁺ /2 and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm.	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	LMV981 (Single) (-40°C to +125°C)		1	6	mV
		LMV982 (Dual) (-40°C to +125°C)		1	7.5	
Input Offset Voltage Average Drift	TCVIO			5.5		μV/°C
Input Bias Current (Note 5)	Ι _Β	-40°C to +125°C		< 1		nA
Input Offset Current (Note 5)	I _{IO}	-40°C to +125°C		< 1		nA
Supply Current (per	I _{CC}	In Active Mode		80	190	μΑ
Channel)	-	-40°C to +125°C			210	
	-	In Shutdown: LMV981 (Single)			1.0	
	-	-40°C to +125°C			2.0	
	-	In Shutdown: LMV982 (Dual)			3.5	
	-	-40°C to +125°C			5.0	
Common Mode	CMRR	0 V \leq V_{CM} \leq 1.5 V, 2.3 V \leq V_{CM} \leq 2.7 V	50	70		dB
Rejection Ratio		-40°C to +125°C	50			
		-0.2 V \leq V_{CM} \leq 0 V, 2.7 V \leq V_{CM} \leq 2.9 V	50	70		
Power Supply	PSRR	1.8 V \leq V ⁺ \leq 5 V, V _{CM} = 0.5 V	50	70		dB
Rejection Ratio		−40°C to +125°C	50			
Input Common–Mode Voltage Range	Vсм	For CMRR \geq 50 dB and T _A = 25°C	V– – 0.2	-0.2 to 3.0	V+ + 0.2	V
		For CMRR \geq 50 dB and T _A = -40°C to +85°C	V-		V+	
		For CMRR \geq 50 dB and T _A = -40°C to +125°C	V– + 0.2		V+ - 0.2	
Large Signal Voltage	A _V	$\rm R_L$ = 600 Ω to 1.35 V, $\rm V_O$ = 0.2 V to 2.5 V	87	104		dB
Gain LMV981 (Single) (Note 5)		-40°C to +125°C	86			
		$\rm R_L$ = 2 k\Omega to 1.35 V, $\rm V_O$ = 0.2 V to 2.5 V	92	110		
		-40°C to +125°C	91			
Large Signal Voltage	A _V	$\rm R_L$ = 600 Ω to 1.35 V, $\rm V_O$ = 0.2 V to 2.5 V	78	90		
Gain LMV982 (Dual) (Note 5)		-40°C to +125°C	75			
		$\rm R_L$ = 2 k\Omega to 1.35 V, $\rm V_O$ = 0.2 V to 2.5 V	81	100		-
	-	-40°C to +125°C	78			
Output Swing	V _{OH}	$\rm R_L$ = 600 Ω to 1.35 V, $\rm V_{IN}$ = $\pm100~mV$	2.55	2.62		V
		-40°C to +125°C	2.53			
	V _{OL}	$\rm R_L$ = 600 Ω to 1.35 V, $\rm V_{IN}$ = $\pm100~mV$		0.083	0.11	
		-40°C to +125°C		1	0.13	
	V _{OH}	R_L = 2 k\Omega to 1.35 V, V_{IN} = ±100 mV	2.65	2.675		
		-40°C to +125°C	2.64			
	V _{OL}	R_L = 2 k\Omega to 1.35 V, V_{IN} = ±100 mV		0.025	0.04	
		-40°C to +125°C			0.045	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Guaranteed by design and/or characterization.

2.7V DC ELECTRICAL CHARACTERISTICS Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,	
$V^+ = 2.7 V$, $V^- = 0 V$, $V_{CM} = V + /2$, $V_O = V^+ /2$ and $R_L > 1 M\Omega$. Typical specifications represent the most likely parametric norm.	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Short Circuit Current	Ι _Ο	Sourcing, Vo = 0 V, V _{IN} = \pm 100 mV	20	65		mA
		-40°C to +125°C	15			
		Sinking, Vo = 0 V, V_{IN} = -100 mV	18	75		
		-40°C to +125°C	12			
Shutdown Enable Control	V _{SHDN}	Turn-on Voltage to Enable Device		1.9		V
		Turn-off Voltage to Shutdown Device		0.55		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Guaranteed by design and/or characterization.

2.7V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, V+ = 2.7 V, V- = 0 V, V_{CM} = 2.0V, Vo = V+/2 and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm. Min/Max specifications are guaranteed by testing, characterization, or statistical analysis.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	SR	(Note 6)		0.4		V/uS
Gain Bandwidth Product	GBWP			1.4		MHz
Phase Margin	Θm			70		0
Gain Margin	Gm			7.5		dB
Input–Referred Voltage Noise	e _n	f = 50 kHz, V _{CM} = 1.0 V		57		nV/√Hz
Total Harmonic Distortion	THD	f = 1 kHz, A_V = +1, R_L = 600 Ω , V_O = 1 V_{PP}		0.022		%
Amplifier-to-Amplifier Isolation		(Note 7)		123		dB

6. Connected as voltage follower with input step from V- to V+. Number specified is the slower of the positive and negative slew rates.

7. Input referred, $R_L = 100 \text{ k}\Omega$ connected to V+/2. Each amp excited in turn with 1 kHz to produce $V_O = 3 V_{PP}$. (For Supply Voltages < 3 V, $V_O = V_{+}$).

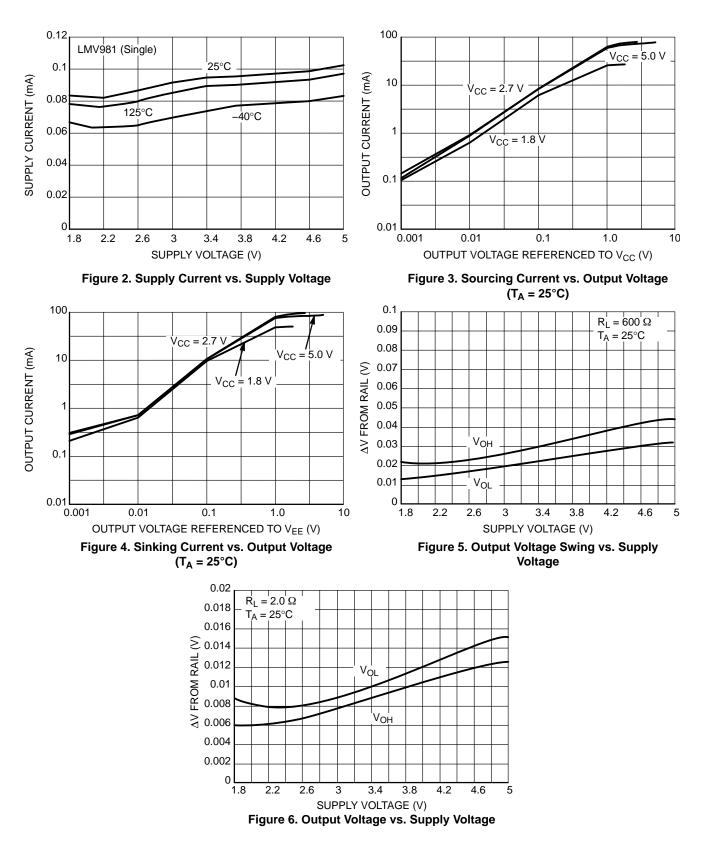
5V DC ELECTRICAL CHARACTERISTICS Unless otherwise noted, all min/max limits are guaranteed for $T_A = 25^{\circ}C$, V ⁺ = 5 V,	
$V^- = 0 V$, $V_{CM} = V + /2$, $V_O = V^+ /2$ and $R_L > 1 M\Omega$. Typical specifications represent the most likely parametric norm.	

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}	LMV981 (Single) (-40°C to +125°C)		1	6	mV	
		LMV982 (Dual) (-40°C to +125°C)		1	7.5		
Input Offset Voltage Average Drift	TCVIO			5.5		μV/°C	
Input Bias Current (Note 8)	Ι _Β	-40°C to +125°C		< 1		nA	
Input Offset Current (Note 8)	I _{IO}	-40°C to +125°C		< 1		nA	
Supply Current (per	I _{CC}	In Active Mode		95	210	μΑ	
Channel)		-40°C to +125°C			230		
		In Shutdown: LMV981 (Single)			1.0		
		-40°C to +125°C			2.0		
		In Shutdown: LMV982 (Dual)			3.5		
		-40°C to +125°C			5.0		
Common-Mode	CMRR	0 V \leq V_{CM} \leq 3.8 V, 4.6 V \leq V_{CM} \leq 5.0 V	50	70		dB	
Rejection Ratio		−40°C to +125°C	50				
		-0.2 V \leq V_{CM} \leq 0 V, 5.0 V \leq V_{CM} \leq 5. 2V	50	70			
Power Supply	PSRR	1.8 V \leq V ⁺ \leq 5 V, V _{CM} = 0.5 V	50	70		dB	
Rejection Ratio	-	−40°C to +125°C	50				
Input Common–Mode Voltage Range	Vсм	For CMRR \geq 50 dB and T _A = 25°C	V ⁻ - 0.2	-0.2 to 5.3	V+ + 0.2	V	
		For CMRR \geq 50 dB and T _A = -40°C to +85°C	V -		V+	1	
		For CMRR \geq 50 dB and T _A = -40°C to +125°C	V [−] + 0.3		V+ - 0.3		
Large Signal Voltage	A _V	$\rm R_L$ = 600 Ω to 2.5 V, $\rm V_O$ = 0.2 V to 4.8 V	88	102		dB	
Gain LMV981 (Single) (Note 8)		-40°C to +125°C	87				
		R_L = 2 k Ω to 2.5 V, V_O = 0.2 V to 4.8 V	94	113			
		-40°C to +125°C	93				
Large Signal Voltage	A _V	$\rm R_L$ = 600 Ω to 2.5 V, $\rm V_O$ = 0.2 V to 4.8 V	81	90			
Gain LMV982 (Dual) (Note 8)		-40°C to +125°C	78				
(R_L = 2 k Ω to 2.5 V, V_O = 0.2 V to 4.8 V	85	100			
		−40°C to +125°C	82				
Output Swing	V _{OH}	$\rm R_L$ = 600 Ω to 2.5 V, $\rm V_{IN}$ = $\pm100~mV$	4.855	4.89		V	
		−40°C to +125°C	4.835			-	
	V _{OL}	${\sf R}_{\sf L}$ = 600 Ω to 2.5 V, ${\sf V}_{\sf IN}$ = ±100 mV		0.12	0.16		
		-40°C to +125°C			0.18		
	V _{OH}	R_L = 2 k Ω to 2.5 V, V_{IN} = $\pm100~mV$	4.945	4.967			
		-40°C to +125°C	4.935				
	V _{OL}	R_L = 2 k Ω to 2.5 V, V_{IN} = $\pm100~mV$	1	0.037	0.065		
		-40°C to +125°C			0.075		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 8. Guaranteed by design and/or characterization.

5V DC ELECTRICAL CHARACTERISTICS Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C, V ⁺ = 5 V,	
$V^- = 0 V$, $V_{CM} = V+/2$, $V_O = V^+/2$ and $R_L > 1 M\Omega$. Typical specifications represent the most likely parametric norm.	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Short–Circuit	Ι _Ο	Sourcing, Vo = 0 V, V_{IN} = +100 mV	40	60		mA
Current		−40°C to +125°C	40			
		Sinking, Vo = 5 V, V_{IN} = -100 mV	45	65		
		−40°C to +125°C	45			
Shutdown Enable	V _{SHDN}	Turn-on Voltage to Enable Device		4.2		V
Control		Turn-off Voltage to Shutdown Device		0.55		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 8. Guaranteed by design and/or characterization.

5V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for T_A = 25°C, V+ = 5 V, V- = 0 V, V_{CM} = 2.0 V, V_0 = V+/2 and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	SR	(Note 9)		0.48		V/uS
Gain Bandwidth Product	GBWP			1.5		MHz
Phase Margin	Θm			65		0
Gain Margin	Gm			8		dB
Input–Referred Voltage Noise	e _n	f = 50 kHz, V_{CM} = 2 V		50		nV/√Hz
Total Harmonic Distortion	THD	f = 1 kHz, A_V = +1, R_L = 600 Ω , V_O = 1 V_{PP}		0.022		%
Amplifier-to- Amplifier Isolation		(Note 10)		123		dB

9. Connected as voltage follower with input step from V– to V+. Number specified is the slower of the positive and negative slew rates. 10. Input referred, $R_L = 100 \text{ k}\Omega$ connected to V+/2. Each amp excited in turn with 1 kHz to produce $V_O = 3 V_{PP}$ (For Supply Voltages < 3 V, $\dot{V}_{O} = V+$).

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)

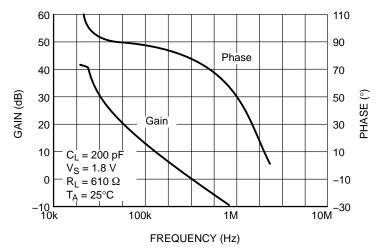
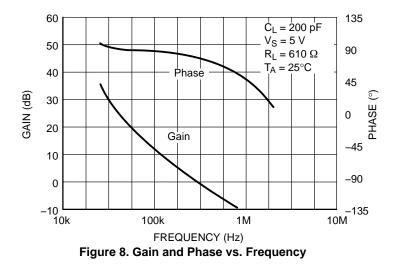
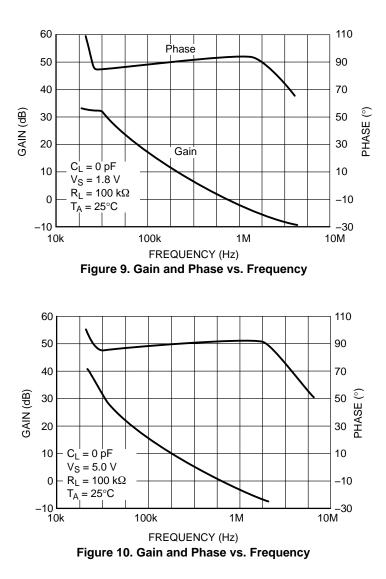
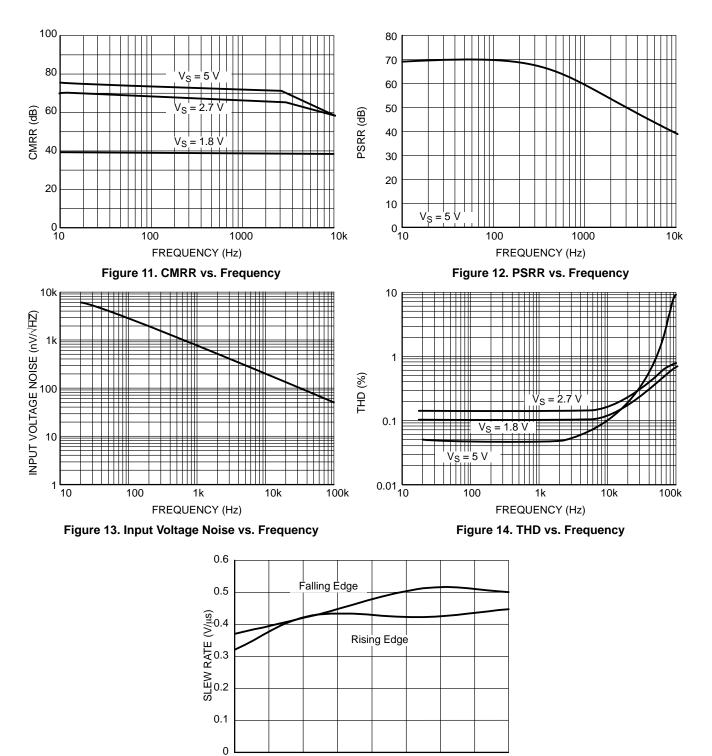




Figure 7. Gain and Phase vs. Frequency


TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)

TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)

1.8

2.2

2.6

3

3.4

SUPPLY VOLTAGE (V) Figure 15. Slew Rate vs. Supply Voltage

3.8

4.2

4.6

5

TYPICAL CHARACTERISTICS



TIME (2µs/div) Figure 16. Small Signal Noninverting Response

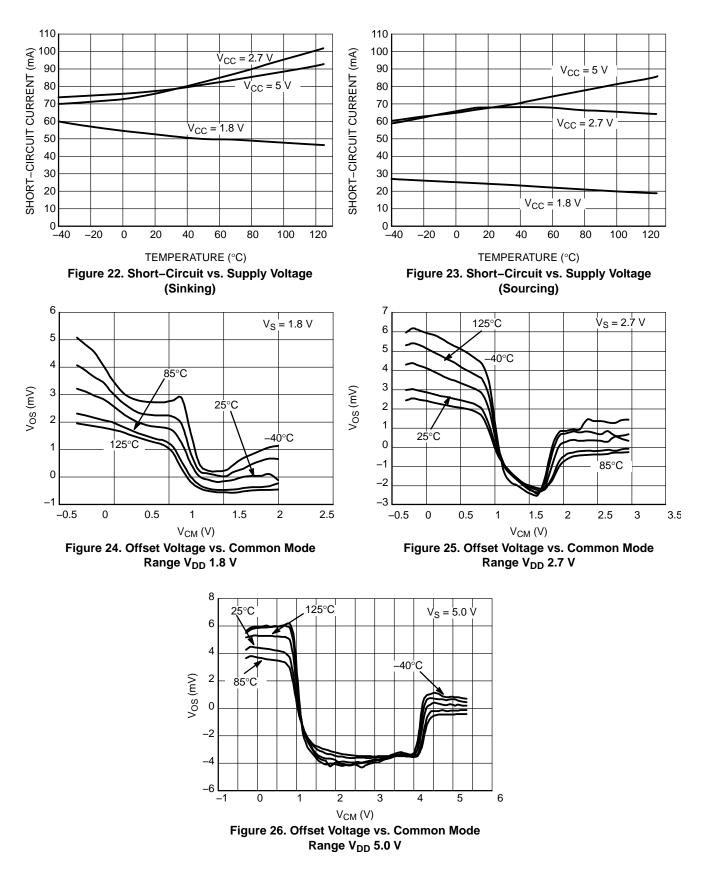
TIME (2µs/div) Figure 17. Small Signal Noninverting Response

TYPICAL CHARACTERISTICS

TIME (2µs/div) Figure 18. Small Signal Noninverting Response

TIME (2µs/div) Figure 19. Large Signal Noninverting Response

TYPICAL CHARACTERISTICS


TIME (2µs/div) Figure 20. Large Signal Noninverting Response

TIME (2µs/div)

Figure 21. Large Signal Noninverting Response

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

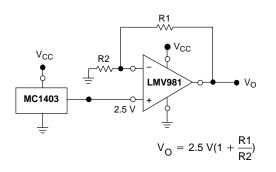
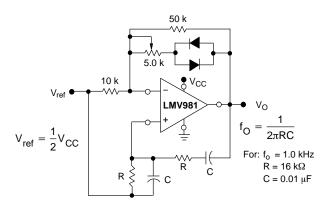
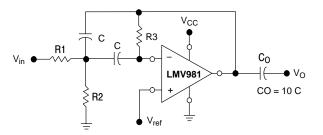




Figure 27. Voltage Reference

Figure 28. Wien Bridge Oscillator

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value f_o, C
Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier, $((Q_O f_O)/BW) < 0.1$ where f_o and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 30. Multiple Feedback Bandpass Filter

ORDERING INFORMATION						
Order Number	# of Channels	Specific Device Marking	Package Type	Shipping [†]		
LMV981SQ3T2G*	Single	AAE	SC70–6* (Pb–Free)	3000 / Tape & Reel		
LMV981MU3TBG	Single	V	ULLGA8 (Pb–Free)	3000 / Tape & Reel		
LMV982DMR2G*	Dual	V982	Micro10* (Pb-Free)	4000 / Tape & Reel		
LMV982MUTAG	Dual	DE	UQFN10 (Pb-Free)	3000 / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*Consult sales for package availability.

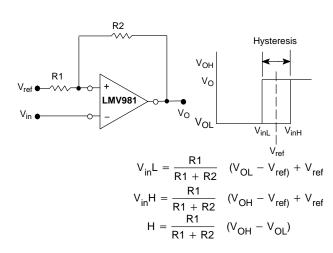
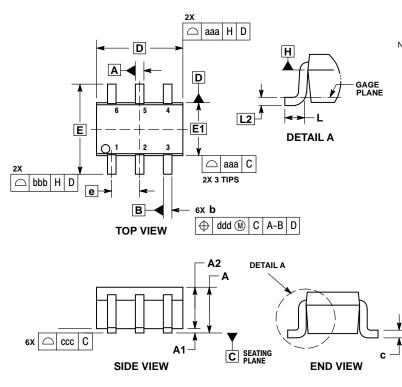
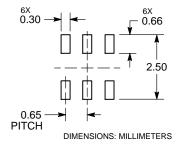



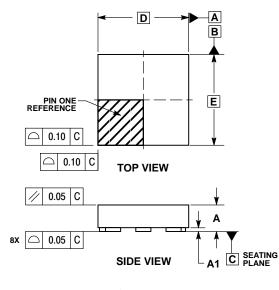
Figure 29. Comparator with Hysteresis

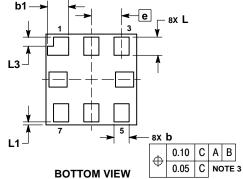
SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**



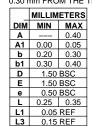
NOTES:

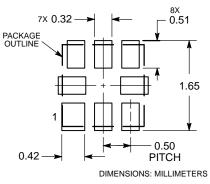
- 1. 2.
- LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF 3.
- 4.
- 5 6.
- DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. 7.


	MIL	LIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.00		0.10	0.000		0.004	
A2	0.70	0.90	1.00	0.027	0.035	0.039	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.08	0.15	0.22	0.003	0.006	0.009	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65 BS	С	0.026 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018	
L2		0.15 BS		0.006 BSC			
aaa		0.15		0.006			
bbb		0.30		0.012			
CCC		0.10		0.004			
ddd		0.10			0.004		


RECOMMENDED **SOLDERING FOOTPRINT***

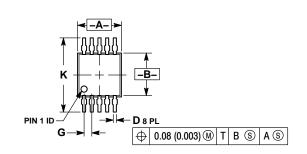
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

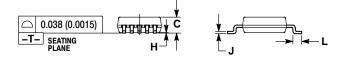

ULLGA8, 1.5x1.5, 0.5P CASE 613AG ISSUE A



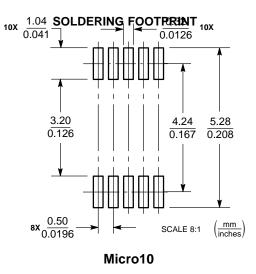
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

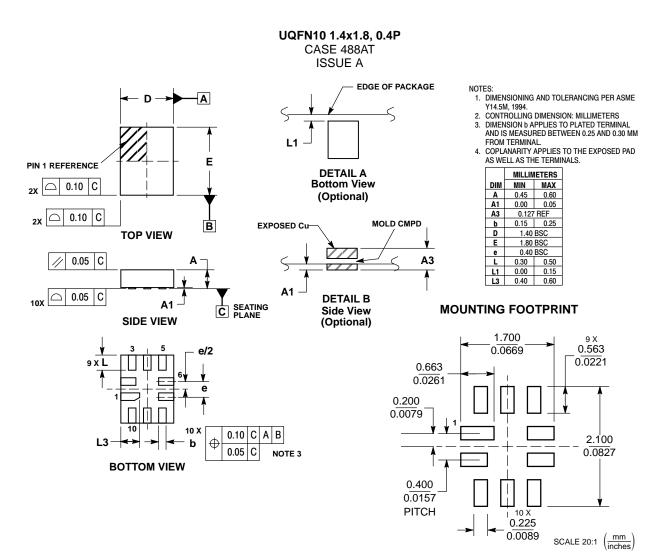
 ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.




MOUNTING FOOTPRINT

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


Micro10 CASE 846B-03 ISSUE D



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION "B" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846B-01 OBSOLETE. NEW STANDARD 846B-02

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
C	0.95	1.10	0.037	0.043	
D	0.20	0.30	0.008	0.012	
G	0.50	BSC	0.020) BSC	
Н	0.05	0.15	0.002	0.006	
J	0.10	0.21	0.004	0.008	
K	4.75	5.05	0.187	0.199	
L	0.40	0.70	0.016	0.028	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the inter

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative