LV5781

3A, Point-of-load, Chopper-type Step-down Converter

Overview

The LV5781 is a 1-channel chopper-type (low-side Schottky diode) step-down switching regulator. It incorporates an $80m\Omega$ (typical) power MOSFET to achieve high-efficiency operation for 3A output currents.

The output voltage is set internally to 3.3V. By adding two external resistors, it is possible to set the voltage to any desired setting above 0.85V. Inrush current at startup can be prevented by the soft start function.

Using the ON/OFF pins, the converter can be set to standby mode in which the current consumption is 10μ A or less. Both the load and the IC are protected by means of the overcurrent and thermal protection functions. The converter uses the HSSOP14 miniature package.

Functions

- 3A, 1-channel chopper-type, step-down switching regulator
- Output voltage: 3.3V
- Setting of any output voltage enabled (external resistors required)
- High efficiency: 90% at $I_{OUT}=1A$, $V_{O}=3.3V$
- Miniature package: HSSOP14
- Soft start function
- Standby mode
- Overcurrent protection
- Thermal shutdown
- Fixed frequency: 180kHz

Applications

- LCD TVs
- Game machines

Specifications

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum input voltage	V _{IN} max		6.5	V
Maximum CBOOT pin voltage	VBT max		13	V
Maximum SW pin voltage	VSW max		6.5	V
Maximum voltage between CBOOT and SW pins	VBS max		6.5	V
Maximum voltage at FB, SS, and ENABLE pins	Vfs max		6.5	V
Junction temperature	Tj max		125	°C
Allowable power dissipation	Pd max	Mounted on a circuit board *1	0.85	W
Operating temperature range	Topr		-30 to +80	°C
Storage temperature range	Tstg		-40 to +125	°C

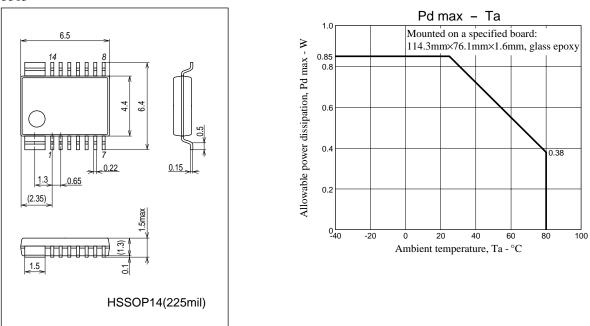
*1: Mounted on a specified board: 114.3mm×76.1mm×1.6mm, glass epoxy.

*2: To ensure that the maximum voltage is not exceeded even for an instant, check that the coil voltage and other surge voltage levels are factored in.

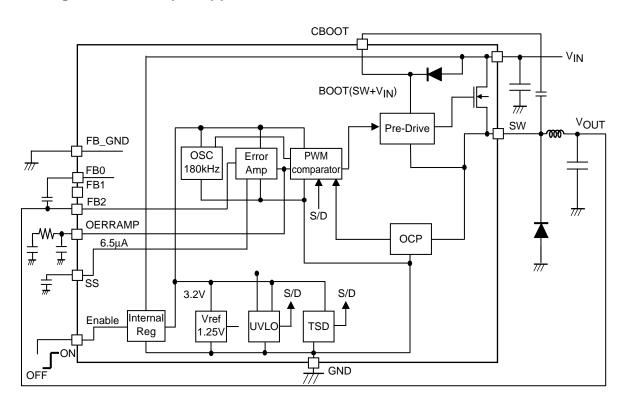
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta= $25^{\circ}C$

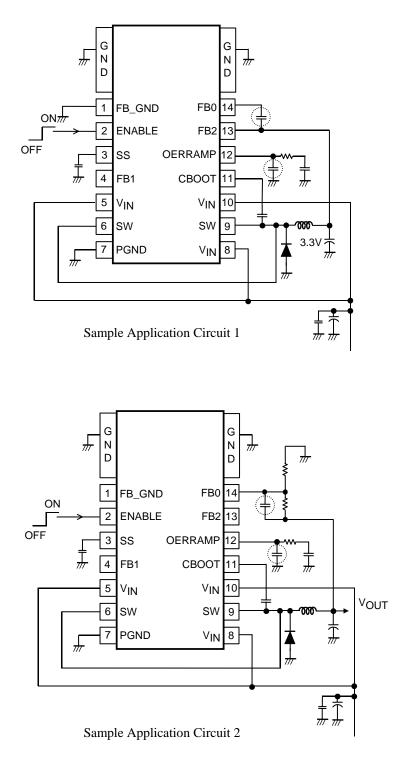
Parameter	Symbol	Conditions	Ratings	Unit
V _{IN} pin voltage	VIN		4.5 to 6	V
CBOOT pin voltage	VBT		0 to 6	V
SW pin voltage	VSW		6	V
FB, SS, and ENABLE pin voltage	VFSO		6	V


Electrical Characteristics at Ta=25°C, V_{IN}=5V (Unless specifically specified)

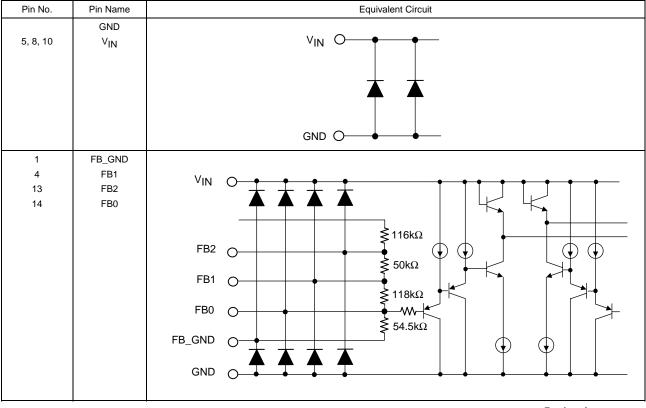
Parameter	Oursels al	Oraditions	Ratings			11.3
	Symbol	Symbol Conditions	min	typ	max	Unit
Output voltage 1	VOUT1	FB2 pin selected	3.2	3.3	3.4	V
Output voltage 2	V _{OUT} 2	Dependent on the external voltage divider	0.85			V
Standby mode IC consumption current	ICC1	ENABLE=0V		1	10	μΑ
Operating time IC consumption current	ICC2	ENABLE=3V		2	5	mA
ENABLE high level voltage	VENH		3			V
ENABLE low level voltage	VENL				0.7	V
Efficiency	Effcy	I _{OUT} =1A, V _O =3.3V		90		%
Reference voltage	Vref	V _{IN} =4.5V to 6V(±2%)	0.76	0.8	0.84	V
FB pin bias current	Iref			50	200	nA
On resistance	Ron	CBOOT=5V		80		mΩ
Soft start current	ISS		3	6.5	13	μΑ
Oscillation frequency	Fosc		145	180	225	kHz
Maximum on duty ratio	D max		85			%
Current limiting value	lcl		4.1			А
Under voltage detection	VI		3.3	3.7	4.2	V
Under voltage detection hysteresis	Vlh		0.15	0.185	0.25	V
Thermal shutdown temperature	Ttsd	Design guarantee value*		180		°C
Thermal shutdown temperature hysteresis	Dtsd	Design guarantee value*		20		°C


*These are design guarantee values and no measurements are made.

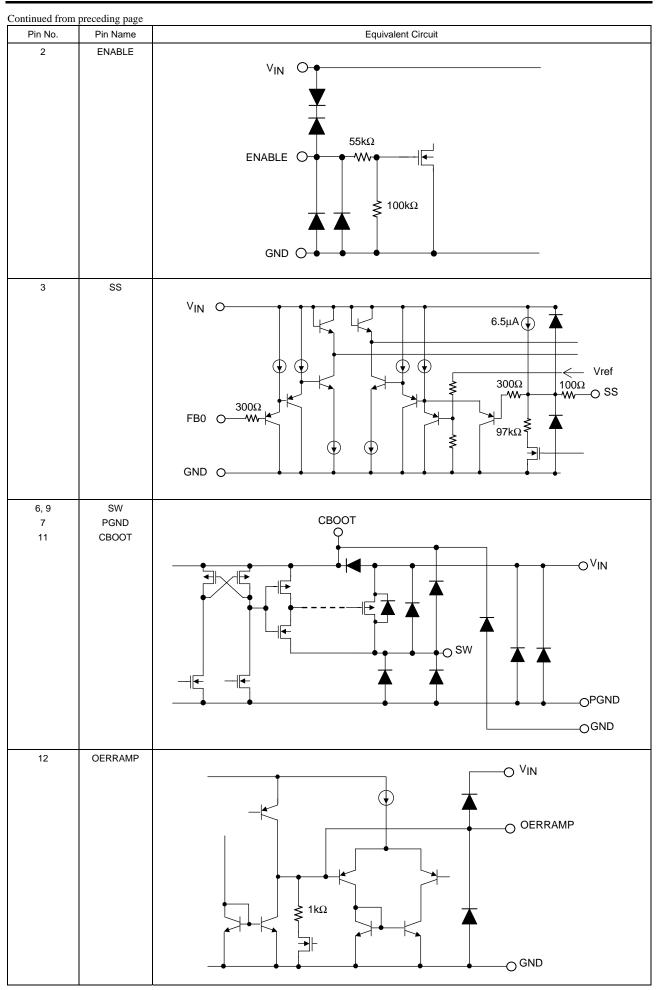
Package Dimensions


unit : mm (typ) 3313

Block Diagram and Sample Application Circuits



*The capacitor between the FB0 and V_{OUT} pins and capacitor between the OERRAMP pin and GND (the capacitors shown inside the broken lines in the diagram) are used for phase compensation. Their capacitance is intended to stop oscillation when oscillation is caused by the status of the output capacitor. As such, they can be left open under normal circumstances.


Pin Functions

Pin No.	Pin name	Description			
1	FB_GND	GND of output voltage setting pins FB0 and FB2. It is connected to GND for use when pin FB2 is used.			
2	ENABLE	Output ON/OFF with an active-high polarity. When set to L, the current consumption is reduced to $10\mu A$ less.			
3	SS	Soft start time constant setting. The charge current is set to approx. 6.5μ A and when a capacitor of 0.1μ F connected between this pin and GND, the output rises in approx. 12ms.			
4	FB1	Test pin for verifying the internal reference voltage. It must be set to open for actual use.			
5, 8, 10	VIN	Power input. It is used with voltages ranging from 4.5V to 6V.			
6, 9	SW	Inductor drive output			
7	PGND	Power GND pin. This is the output GND. It is connected so that where at all possible, no impedance is shared with other GND pins (GND, FB_GND).			
11	CBOOT	For generating the gate voltage of the internal high-side n-channel MOS transistor. A capacitor with a capacitance of at least 0.1μ F (max. 2.2μ F) is connected between this pin and the SW pin for use.			
12	OERRAMP	Transconductance-type Error_Amp output. An integration constant is provided between this pin and GND to implement phase compensation.			
13	FB2	Used to feed back the output voltage to this pin when the output voltage is to be set to 3.3V. In such a case, FB_GND is connected to GND. Refer to application circuit 1.			
14	FB0	When the output voltage is to be set to a desired value, connect resistors between FB0 and GND and between FB0 and V _{OUT} to feed back the output voltage to this pin. In such a case, leave FB_GND and FB2 open. Refer to application circuit 2.			
Heat sink fin	GND	Analog GND (connected to GND).			

Input Equivalent Circuits

Continued on next page

LV5781

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.