# 3.3 V / 5 V ECL Differential Receiver/Driver With Reduced Output Swing

#### Description

The MC100EP16F is a differential receiver/driver. The device is functionally equivalent to the EP16 device with higher performance capabilities. With reduced output swings, rise/fall transition times are significantly faster than on the EP16. The EP16F is ideally suited for interfacing with high frequency sources.

The  $V_{BB}$  pin, an internally generated voltage supply, is available to this device only. For Single-Ended input conditions, the unused differential input is connected to  $V_{BB}$  as a switching reference voltage.  $V_{BB}$  may also rebias AC coupled inputs. When used, decouple  $V_{BB}$  and  $V_{CC}$  via a 0.01  $\mu$ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used,  $V_{BB}$  should be left open.

#### **Features**

- 100 ps Typical Rise and Fall Time
- Max Frequency > 4 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:
  - $V_{CC} = 3.0 \text{ V}$  to 5.5 V with  $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
  - $V_{CC} = 0V$  with  $V_{EE} = -3.0 \text{ V}$  to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant



#### ON Semiconductor®

#### www.onsemi.com





SOIC-8 NB D SUFFIX CASE 751-07 TSSOP-8 DT SUFFIX CASE 948R-02

#### **MARKING DIAGRAMS\***





A = Assembly Location

L = Wafer Lot Y = Year W = Work Week M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

\*For additional marking information, refer to Application Note <u>AND8002/D</u>.

#### **ORDERING INFORMATION**

| Device          | Package                | Shipping <sup>†</sup> |
|-----------------|------------------------|-----------------------|
| MC100EP16FDG    | SOIC-8 NB<br>(Pb-Free) | 98 Units/Tube         |
| MC100EP16FDR2G  | SOIC-8 NB<br>(Pb-Free) | 2500/Tape & Reel      |
| MC100EP16FDTG   | TSSOP-8<br>(Pb-Free)   | 100 Units/Tube        |
| MC100EP16FDTR2G | TSSOP-8<br>(Pb-Free)   | 2500/Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <a href="https://example.com/BRD8011/D">BRD8011/D</a>.

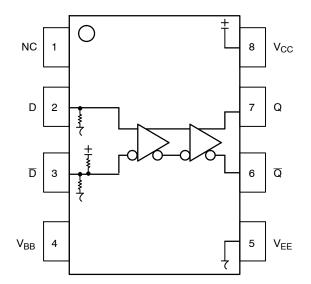



Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

**Table 1. PIN DESCRIPTION** 

| PIN                 | FUNCTION                 |
|---------------------|--------------------------|
| D*, <del>D</del> ** | ECL Data Inputs          |
| Q, Q                | ECL Data Outputs         |
| V <sub>BB</sub>     | Reference Voltage Output |
| V <sub>CC</sub>     | Positive Supply          |
| V <sub>EE</sub>     | Negative Supply          |
| NC                  | No Connect               |

- \* Pins will default LOW when left open.
- \*\* Pins will default to  $V_{CC}/2$  when left open.

Table 2. ATTRIBUTES

| Characteristics                                                    | Value                       |
|--------------------------------------------------------------------|-----------------------------|
| Internal Input Pulldown Resistor                                   | 75 kΩ                       |
| Internal Input Pullup Resistor                                     | 37.5 kΩ                     |
| ESD Protection Human Body Model Machine Model Charged Device Model | > 4 kV<br>> 200 V<br>> 2 kV |
| Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)      | Pb-Free Pkg                 |
| SOIC-8 NB<br>TSSOP-8                                               | Level 1<br>Level 3          |
| Flammability Rating Oxygen Index: 28 to 34                         | UL 94 V-0 @ 0.125 in        |
| Transistor Count                                                   | 139                         |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test             |                             |

<sup>1.</sup> For additional information, see Application Note AND8003/D.

**Table 3. MAXIMUM RATINGS** 

| Symbol            | Parameter                                          | Condition 1                                    | Condition 2                                                       | Rating        | Unit |
|-------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|---------------|------|
| V <sub>CC</sub>   | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                                                   | 6             | V    |
| V <sub>EE</sub>   | NECL Mode Power Supply                             | V <sub>CC</sub> = 0 V                          |                                                                   | -6            | V    |
| VI                | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6<br>-6       | V    |
| l <sub>out</sub>  | Output Current                                     | Continuous<br>Surge                            |                                                                   | 50<br>100     | mA   |
| I <sub>BB</sub>   | V <sub>BB</sub> Sink/Source                        |                                                |                                                                   | ± 0.5         | mA   |
| T <sub>A</sub>    | Operating Temperature Range                        |                                                |                                                                   | -40 to +85    | °C   |
| T <sub>stg</sub>  | Storage Temperature Range                          |                                                |                                                                   | -65 to +150   | °C   |
| $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | SOIC-8 NB                                                         | 190<br>130    | °C/W |
| $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | SOIC-8 NB                                                         | 41 to 44 ± 5% | °C/W |
| $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | TSSOP-8                                                           | 185<br>140    | °C/W |
| $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | TSSOP-8                                                           | 41 to 44 ± 5% | °C/W |
| T <sub>sol</sub>  | Wave Solder (Pb-Free)                              | <2 to 3 sec @ 260°C                            |                                                                   | 265           | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 4. DC CHARACTERISTICS, PECL (V<sub>CC</sub> = 3.3 V, V<sub>EE</sub> = 0 V (Note 1))

|                    |                                                                                  |             | -40°C |      |             | 25°C |      |             | 85°C |      |      |
|--------------------|----------------------------------------------------------------------------------|-------------|-------|------|-------------|------|------|-------------|------|------|------|
| Symbol             | Characteristic                                                                   | Min         | Тур   | Max  | Min         | Тур  | Max  | Min         | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                             | 23          | 28    | 40   | 25          | 33   | 45   | 26          | 33   | 45   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 2)                                                     | 2155        | 2280  | 2405 | 2155        | 2280 | 2405 | 2155        | 2280 | 2405 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 2)                                                      | 1525        | 1690  | 1775 | 1525        | 1690 | 1775 | 1525        | 1690 | 1775 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                | 2075        |       | 2420 | 2075        |      | 2420 | 2075        |      | 2420 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)<br>(Note 3)                                     | 1355        |       | 1675 | 1355        |      | 1675 | 1355        |      | 1675 | mV   |
| V <sub>BB</sub>    | Output Voltage Reference                                                         | 1775        | 1875  | 1975 | 1775        | 1875 | 1975 | 1775        | 1875 | 1975 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 4) | 2.0         |       | 3.3  | 2.0         |      | 3.3  | 2.0         |      | 3.3  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                               |             |       | 150  |             |      | 150  |             |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current D D                                                            | 0.5<br>-150 |       |      | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.3 V to -2.2 V. 2. All loading with 50  $\Omega$  to V<sub>CC</sub> 2.0 V.
- 3. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the V<sub>IL</sub> specification over temperature.
- 4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 5. DC CHARACTERISTICS, PECL ( $V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V} \text{ (Note 1)}$ )

|                    |                                                                                  | -40°C       |      | 25°C |             |      | 85°C |             |      |      |      |
|--------------------|----------------------------------------------------------------------------------|-------------|------|------|-------------|------|------|-------------|------|------|------|
| Symbol             | Characteristic                                                                   | Min         | Тур  | Max  | Min         | Тур  | Max  | Min         | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                             | 23          | 28   | 40   | 25          | 35   | 45   | 26          | 33   | 45   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 2)                                                     | 3855        | 3980 | 4105 | 3855        | 3980 | 4105 | 3855        | 3980 | 4105 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 2)                                                      | 3225        | 3390 | 3475 | 3225        | 3390 | 3475 | 3225        | 3390 | 3475 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                | 3775        |      | 4120 | 3775        |      | 4120 | 3775        |      | 4120 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)<br>(Note 3)                                     | 3055        |      | 3375 | 3055        |      | 3375 | 3055        |      | 3375 | mV   |
| V <sub>BB</sub>    | Output Voltage Reference                                                         | 3475        | 3575 | 3675 | 3475        | 3575 | 3675 | 3475        | 3575 | 3675 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 4) | 2.0         |      | 5.0  | 2.0         |      | 5.0  | 2.0         |      | 5.0  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                               |             |      | 150  |             |      | 150  |             |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current D D                                                            | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with  $V_{CC}.\ V_{EE}$  can vary +2.0 V to –0.5 V.
- 2. All loading with 50  $\Omega$  to  $V_{CC}$  2.0 V.
- 3. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. V<sub>OL</sub> has reduced output swing and may not meet the V<sub>IL</sub> specification over temperature.
- 4. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 6. DC CHARACTERISTICS, NECL (V<sub>CC</sub> = 0 V; V<sub>EE</sub> = -5.5 V to -3.0 V (Note 1))

|                    |                                                                                  |                          | -40°C |                          |             | 25°C            |       |             | 85°C  |       |      |
|--------------------|----------------------------------------------------------------------------------|--------------------------|-------|--------------------------|-------------|-----------------|-------|-------------|-------|-------|------|
| Symbol             | Characteristic                                                                   | Min                      | Тур   | Max                      | Min         | Тур             | Max   | Min         | Тур   | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                             | 23                       | 28    | 40                       | 25          | 34              | 45    | 26          | 33    | 45    | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 2)                                                     | -1145                    | -1020 | -895                     | -1145       | -1020           | -895  | -1145       | -1020 | -895  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 2)                                                      | -1775                    | -1610 | -1525                    | -1775       | -1610           | -1525 | -1775       | -1610 | -1525 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                | -1225                    |       | -880                     | -1225       |                 | -880  | -1225       |       | -880  | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)<br>(Note 3)                                     | -1810                    |       | -1625                    | -1810       |                 | -1625 | -1810       |       | -1625 | mV   |
| V <sub>BB</sub>    | Output Voltage Reference                                                         | -1525                    | -1425 | -1325                    | -1525       | -1425           | -1325 | -1525       | -1425 | -1325 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 4) | V <sub>EE</sub> +2.0 0.0 |       | V <sub>EE</sub> +2.0 0.0 |             | V <sub>EE</sub> | +2.0  | 0.0         | V     |       |      |
| I <sub>IH</sub>    | Input HIGH Current                                                               |                          |       | 150                      |             |                 | 150   |             |       | 150   | μΑ   |
| I <sub>IL</sub>    | Input LOW Current D D                                                            | 0.5<br>-150              |       |                          | 0.5<br>-150 |                 |       | 0.5<br>-150 |       |       | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V<sub>CC</sub>.
- 2. All loading with 50  $\Omega$  to  $V_{CC}$  2.0 V.
- 3. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. V<sub>OL</sub> has reduced output swing and may not meet the V<sub>II</sub> specification over temperature.
- V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 7. AC CHARACTERISTICS (V<sub>CC</sub> = 0 V; V<sub>EE</sub> = -3.0 V to -5.5 V or V<sub>CC</sub> = 3.0 V to 5.5 V; V<sub>EE</sub> = 0 V (Note 1))

|                                        |                                                                         | -40°C |     | 25°C |     |     | 85°C |     |     |      |      |
|----------------------------------------|-------------------------------------------------------------------------|-------|-----|------|-----|-----|------|-----|-----|------|------|
| Symbol                                 | Characteristic                                                          | Min   | Тур | Max  | Min | Тур | Max  | Min | Тур | Max  | Unit |
| f <sub>max</sub>                       | Maximum Toggle Frequency<br>(See Figure 2. F <sub>max</sub> /JITTER)    |       | > 4 |      |     | > 4 |      |     | > 4 |      | GHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to Output<br>Differential                             | 170   | 210 | 250  | 180 | 220 | 260  | 200 | 250 | 300  | ps   |
| t <sub>SKEW</sub>                      | Duty Cycle Skew                                                         |       | 5.0 | 20   |     | 5.0 | 20   |     | 5.0 | 20   | ps   |
| t <sub>JITTER</sub>                    | Cycle-to-Cycle Jitter (RMS)<br>(See Figure 2. F <sub>max</sub> /JITTER) |       | 0.2 | < 1  |     | 0.2 | < 1  |     | 0.2 | < 1  | ps   |
| V <sub>PP</sub>                        | Input Voltage Swing<br>(Differential Configuration)                     | 150   | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV   |
| t <sub>r</sub><br>t <sub>f</sub>       | Output Rise/Fall Times<br>Q (20% – 80%)                                 | 70    | 85  | 110  | 80  | 100 | 120  | 90  | 110 | 130  | ps   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50  $\Omega$  to V<sub>CC</sub>-2.0 V.

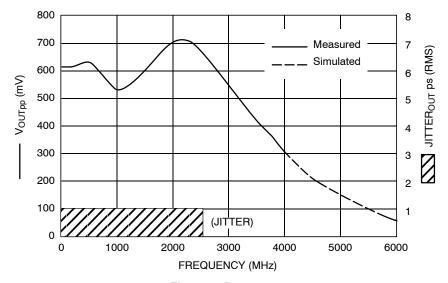



Figure 2.  $F_{max/JITTER}$ 

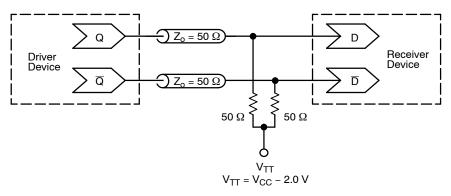
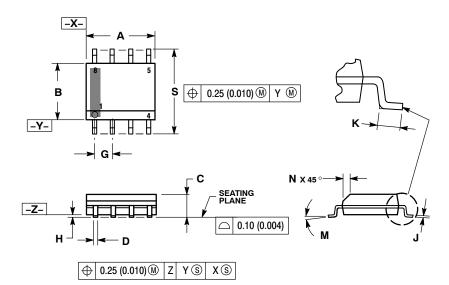



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

#### **Resource Reference of Application Notes**

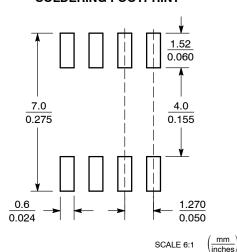
AN1405/D - ECL Clock Distribution Techniques Designing with PECL (ECL at +5.0 V) AN1406/D AN1503/D ECLinPS™ I/O SPiCE Modeling Kit Metastability and the ECLinPS Family AN1504/D AN1568/D Interfacing Between LVDS and ECL The ECL Translator Guide AN1672/D AND8001/D Odd Number Counters Design AND8002/D Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

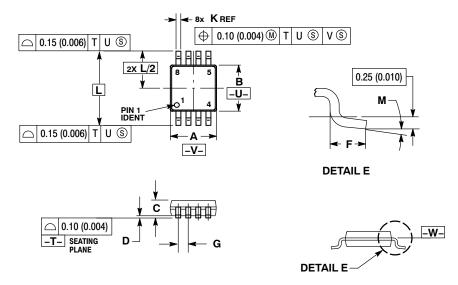
#### **PACKAGE DIMENSIONS**


#### SOIC-8 NB CASE 751-07 **ISSUE AK**



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
  4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
  5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
  6. 751–01 THRU 751–06 ARE OBSOLETE. NEW
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 4.80   | 5.00   | 0.189     | 0.197 |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |
| С   | 1.35   | 1.75   | 0.053     | 0.069 |  |
| D   | 0.33   | 0.51   | 0.013     | 0.020 |  |
| G   | 1.27   | 'BSC   | 0.050 BSC |       |  |
| Н   | 0.10   | 0.25   | 0.004     | 0.010 |  |
| 7   | 0.19   | 0.25   | 0.007     | 0.010 |  |
| K   | 0.40   | 1.27   | 0.016     | 0.050 |  |
| M   | 0 °    | 8 °    | 0 °       | 8 °   |  |
| N   | 0.25   | 0.50   | 0.010     | 0.020 |  |
| S   | 5.80   | 6.20   | 0.228     | 0.244 |  |


#### **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PACKAGE DIMENSIONS

#### TSSOP-8 CASE 948R-02 **ISSUE A**



#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
  PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.
  DIMENSION B DOES NOT INCLUDE INTERLEAD
  FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
  6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

|     | MILLIN | IETERS | INCHES |       |  |
|-----|--------|--------|--------|-------|--|
| DIM | MIN    | MAX    | MIN    | MAX   |  |
| Α   | 2.90   | 3.10   | 0.114  | 0.122 |  |
| В   | 2.90   | 3.10   | 0.114  | 0.122 |  |
| С   | 0.80   | 1.10   | 0.031  | 0.043 |  |
| D   | 0.05   | 0.15   | 0.002  | 0.006 |  |
| F   | 0.40   | 0.70   | 0.016  | 0.028 |  |
| G   | 0.65   | BSC    | 0.026  | BSC   |  |
| K   | 0.25   | 0.40   | 0.010  | 0.016 |  |
| L   | 4.90   | BSC    | 0.193  | BSC   |  |
| M   | 0°     | 6 °    | 0°     | 6°    |  |

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative