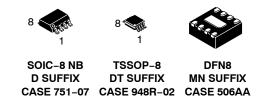
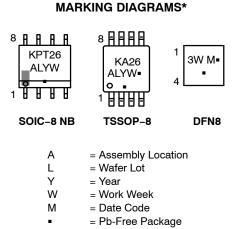
3.3 V 1:2 Fanout Differential LVPECL/LVDS to LVTTL Translator

Description

The MC100EPT26 is a 1:2 Fanout Differential LVPECL/LVDS to LVTTL translator. Because LVPECL (Positive ECL) or LVDS levels are used only +3.3 V and ground are required. The small outline 8-lead package and the 1:2 fanout design of the EPT26 makes it ideal for applications which require the low skew duplication of a signal in a tightly packed PC board.

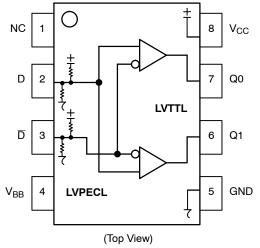
The V_{BB} output allows the EPT26 to be used in a Single-Ended input mode. In this mode the V_{BB} output is tied to the $\overline{D0}$ input for a non-inverting buffer or the D0 input for an inverting buffer. If used, the V_{BB} pin should be bypassed to ground with > 0.01 μF capacitor. For a Single-Ended direct connection, use an external voltage reference source such as a resistor divider. Do not use V_{BB} for a Single-Ended direct connection or port to another device.


Features


- 1.4 ns Typical Propagation Delay
- Maximum Frequency = > 275 MHz Typical
- The 100 Series Contains Temperature Compensation
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with GND = 0 V
- 24 mA TTL outputs
- Q Outputs Will Default LOW with Inputs Open or at $V_{\rm EE}$
- V_{BB} Output
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com



(Note: Microdot may be in either location) *For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping†
MC100EPT26DG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC100EPT26DR2G	SOIC–8 NB (Pb-Free)	2500 Tape & Reel
MC100EPT26DTG	TSSOP-8 (Pb-Free)	100 Tape & Reel
MC100RPT26DTR2G	TSSOP-8 (Pb-Free)	2500 Tape & Reel
MC100EPT26MNR4G	DFN8 (Pb-Free)	1000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Table 1. PIN DESCRIPTION

Pin	Function
Q0, Q1	LVTTL Outputs
D0**, D1**	Differential LVPECL Inputs Pair
V _{CC}	Positive Supply
V _{BB}	Output Reference Voltage
GND	Ground
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be con- nected to a sufficient thermal conduit. Electric- ally connect to the most negative supply (GND) or leave unconnected, floating open.

** Pins will default to $V_{CC}/2$ when left open.

Figure 1.	8-l ead	Pinout	and	l oaic	Diagram
i igui e i i		1 mout	ana	Logio	Diagram

Characteristics	Value						
Internal Input Pulldown Resistor	50 kΩ						
Internal Input Pullup Resistor	50 kΩ						
ESD Protection Human Body Model Machine Model Charged Device Model	> 1.5 kV > 100 V > 2 kV						
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg						
SOIC-8 NB TSSOP-8 DFN8	Level 1 Level 3 Level 1						
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in						
Transistor Count	117 Devices						
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

Table 2. ATTRIBUTES

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to 3.8	V
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C
θJC	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. PECL INPUT DC CHARACTERISTICS (V_{CC} = 3.3 V; GND = 0.0 V (Note 1))

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV
V _{BB}	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 2)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current D D	-150 -150			-150 -150			-150 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input parameters vary 1:1 with V_{CC}.
V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -3.0 mA	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current		10	25	35	mA
I _{CCL}	Power Supply Current		15	34	40	mA
I _{OS}	Output Short Circuit Current		-50		-150	mA

Table 5. TTL OUTPUT DC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$; GND = 0.0 V; $T_A = -40^{\circ}\text{C}$ to 85°C)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 6. AC CHARACTERISTICS (V_{CC} = 3.0 V to 3.6 V; GND = 0.0 V (Note 1))

		−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)	275	350		275	350		275	350		MHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 2)	1.2 1.2	1.5 1.5	2.0 1.8	1.2 1.2	1.5 1.5	2.0 1.8	1.3 1.2	1.7 1.5	2.2 1.8	ns
t _{SK+ +} t _{SK} t _{SKPP}	Within Device Skew + + Within Device Skew – – Device-to-Device Skew (Note 3)		15 20 100	60 85 500		15 20 100	60 85 500		20 30 100	85 85 500	ps
t _{JITTER}	Random Clock Jitter (RMS) (Figure 2) @ ≤ 200 MHz @ > 200 MHz		6 20	30 275		6 40	30 275		6 170	30 275	ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times (0.8 V-2.0 V) Q, Q	330	600	950	330	600	950	330	650	950	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured with a 750 mV 50% duty-cycle clock source. R_L = 500 Ω to GND and C_L = 20 pF to GND. Refer to Figure 3.

2. Reference (V_{CC} = 3.3 V \pm 5%; GND = 0 V)

3. Skews are measured between outputs under identical transitions.

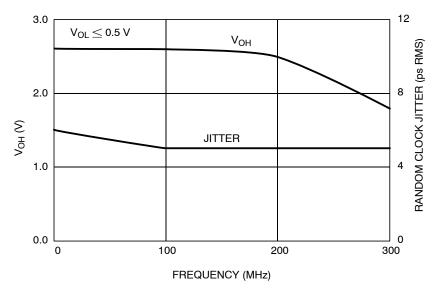
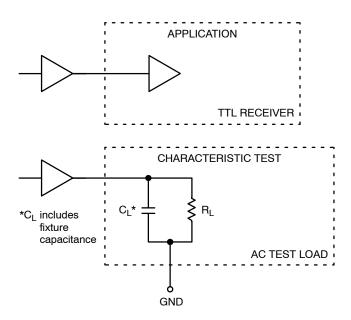
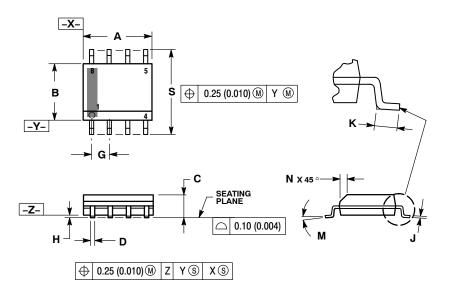


Figure 2. Typical V_{OH} / Jitter versus Frequency (25°C)

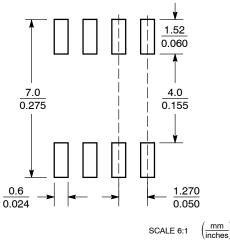



Figure 3. TTL Output Loading Used for Device Evaluation

Resource Reference of Application Notes

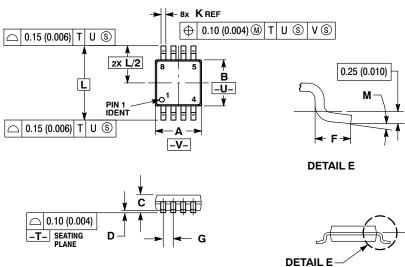
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS


SOIC-8 NB **D SUFFIX** CASE 751-07 **ISSUE AK**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- З.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 4.
- PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. 5.
- 6.

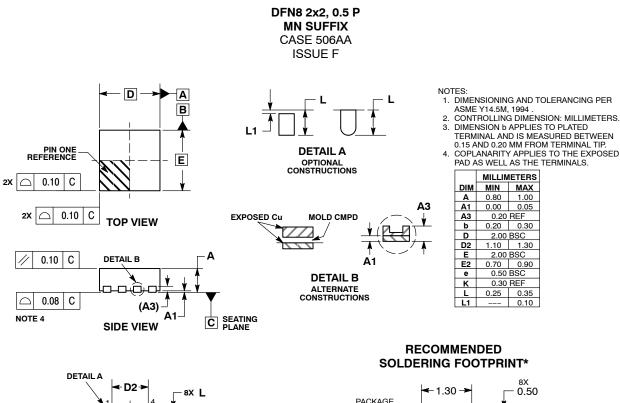
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
к	0.40	1.27	0.016	0.050	
Μ	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

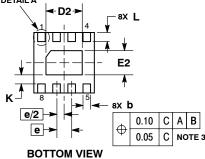

SOLDERING FOOTPRINT*

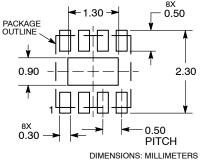
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX CASE 948R-02 **ISSUE A**




NOTES:


Ŭ	INTERLEAD FLASH OF PROTRUSION SHALL EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W								
		MILLIN	MILLIMETERS INCHES						
	DIM	MIN	MAX	MIN	MAX				
	Α	2.90	3.10	0.114	0.122				
	В	2.90	3.10	0.114	0.122				
	С	0.80	1.10	0.031	0.043				
	D	0.05	0.15	0.002	0.006				
	F	0.40	0.70	0.016	0.028				
	G	0.65	BSC	0.026	BSC				
	K	0.25	0.40	0.010	0.016				
	L	4.90 BSC 0.193 BSC							

DTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14,5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and its officers, employees, subsidiaries, and distributors harmed for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal i

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Depage 421 22 700 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative