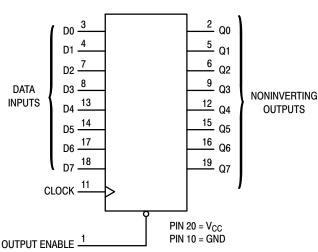
Octal 3-State Noninverting D Flip-Flop with LSTTL-Compatible Inputs

High–Performance Silicon–Gate CMOS

The MC74HCT374A may be used as a level converter for interfacing TTL or NMOS outputs to High–Speed CMOS inputs.


The HCT374A is identical in pinout to the LS374.

Data meeting the setup and hold time is clocked to the outputs with the rising edge of Clock. The Output Enable does not affect the state of the flip–flops, but when Output Enable is high, the outputs are forced to the high–impedance state. Thus, data may be stored even when the outputs are not enabled.

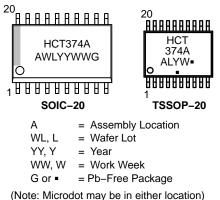
The HCT374A is identical in function to the HCT574A, which has the input pins on the opposite side of the package from the output pins. This device is similar in function to the HCT534A, which has inverting outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- TTL/NMOS-Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1.0 μA
- In Compliance With the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 276 FETs or 69 Equivalent Gates
- Improvements over HCT374
 - Improved Propagation Delays
 - ◆ 50% Lower Quiescent Power
 - Improved Input Noise and Latchup Immunity
- These Devices are Pb-Free and are RoHS Compliant

LOGIC DIAGRAM

ON Semiconductor®


http://onsemi.com

PIN ASSIGNMENT

			_	
OUTPUT ENABLE	1•	20	þ	V _{CC}
Q0 E	2	19	þ	Q7
D0 🗆	3	18	þ	D7
D1 🗆	4	17	þ	D6
Q1 🗆	5	16	þ	Q6
Q2 🗆	6	15	þ	Q5
D2 C	7	14	þ	D5
D3 🗆	8	13	þ	D4
Q3 🗆	9	12	þ	Q4
GND D	10	11	þ	CLOCK

MARKING DIAGRAMS

FUNCTION TABLE Inputs Output Output Enable D Q Clock н Н L L L L L L,H, Х No Change н Х Х Ζ X = don't care

Z = high impedance

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Design Criteria	Value	Units
Internal Gate Count*	69	ea.
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	.0075	рJ

*Equivalent to a two-input NAND gate.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±75	mA
PD	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	0	500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

				Gu	aranteed L	imit	
Symbol	Parameter	Test Conditions	V _{CC} V	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
V_{IH}	Minimum High-Level Input Voltage	$ \begin{aligned} V_{out} &= 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} &\leq 20 \ \mu\text{A} \end{aligned} $	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	V
V _{IL}	Maximum Low-Level Input Voltage	$ \begin{aligned} V_{out} &= 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} &\leq 20 \ \mu\text{A} \end{aligned} $	4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	$ \begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \ \mu A \end{array} $	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 6.0 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 6.0 \text{ mA}$	4.5	0.26	0.33	0.4	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	5.5	±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum Three–State Leakage Current	Output in High–Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	5.5	±0.5	±5.0	±10	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or GND}$ $I_{out} = 0 \ \mu A$	5.5	4.0	40	160	μΑ
ΔI_{CC}	Additional Quiescent Supply Current	$V_{in} = 2.4 \text{ V}$, Any One Input		≥ -55°(25°	C to 125°C	
		$V_{in} = V_{CC}$ or GND, Other Inputs $I_{out} = 0 \ \mu A$	5.5	2.9		2.4	mA

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

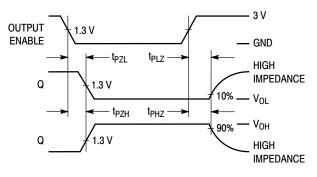
1. Total Supply Current = $I_{CC} + \Sigma \Delta I_{CC}$.

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V $\pm 10\%, \ C_L = 50 \ \text{pF}, \ \text{Input} \ t_{\text{f}} = t_{\text{f}} = 6.0 \ \text{ns})$

		Gua	Guaranteed Limit		
Symbol	Parameter	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	30	24	20	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q (Figures 1 and 4)	31	39	47	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q (Figures 2 and 5)	30	38	45	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q (Figures 2 and 5)	30	38	45	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	12	15	18	ns
C _{in}	Maximum Input Capacitance	10	10	10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High–Impedance State)	15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V		
C _{PD}	Power Dissipation Capacitance (Per Flip–Flop)*	65	pF	

* Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.


TIMING REQUIREMENTS (V_{CC} = 5.0 V \pm 10%, Input t_r = t_f = 6.0 ns)

		Guaranteed Limit			
Symbol	Parameter	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Data to Clock (Figure 3)	12	15	18	ns
t _h	Minimum Hold Time, Clock to Data (Figure 3)	5.0	5.0	5.0	ns
t _w	Minimum Pulse Width, Clock (Figure 1)	12	15	18	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	500	500	500	ns

SWITCHING WAVEFORMS

Figure 1.

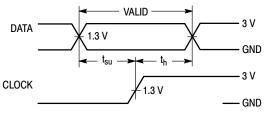


Figure 3.

TEST CIRCUITS

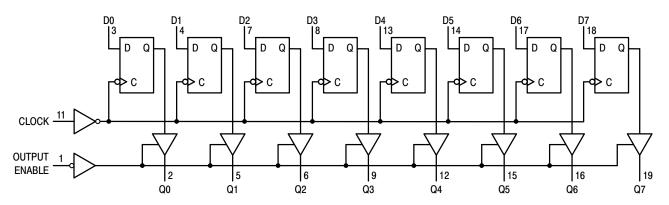
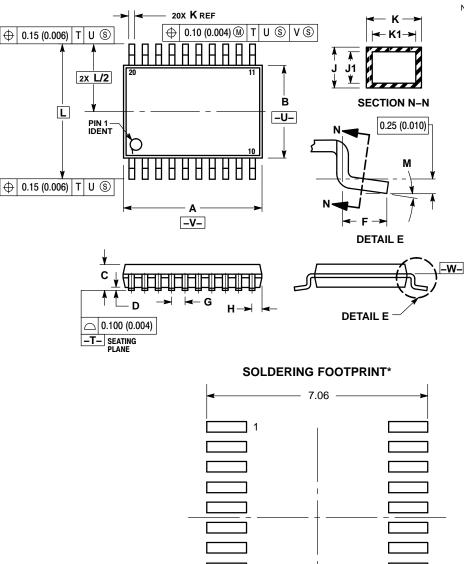



Figure 4.

Figure 5.

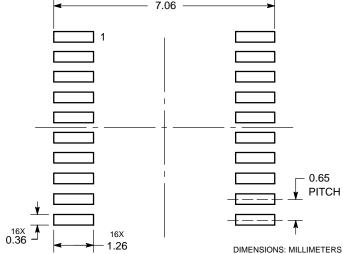
EXPANDED LOGIC DIAGRAM

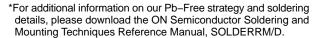

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT374ADWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74HCT374ADWR2G	SOIC-20 (Pb-Free)	1000 Units / Reel
MC74HCT374ADTR2G	TSSOP-20 (Pb-Free)	2500 Units / Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

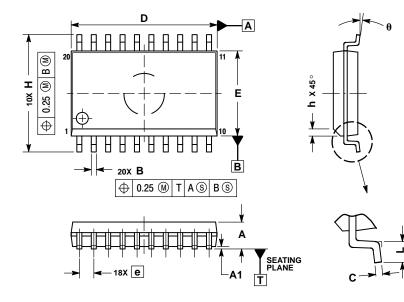
PACKAGE DIMENSIONS


TSSOP-20 DT SUFFIX CASE 948E-02 **ISSUE C**



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEA 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
Κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	
Μ	0°	8°	0°	8°

PACKAGE DIMENSIONS

SOIC-20 DW SUFFIX CASE 751D-05 ISSUE G

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
C	0.23	0.32		
D	12.65	12.95		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

ON Semiconductor and the 🛄 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the des

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative