Dual D-Type Flip-Flop with Set and Clear

With 5.0 V–Tolerant Inputs

The MC74LVX74 is an advanced high speed CMOS D-type flip-flop. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

The signal level applied to the D input is transferred to O output during the positive going transition of the Clock pulse.

Clear (\overline{CD}) and Set (\overline{SD}) are independent of the Clock (CP) and are accomplished by setting the appropriate input Low.

Features

- High Speed: $f_{max} = 145$ MHz (Typ) at $V_{CC} = 3.3$ V
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: $V_{OLP} = 0.5 V (Max)$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

• These Devices are Pb-Free and are RoHS Compliant

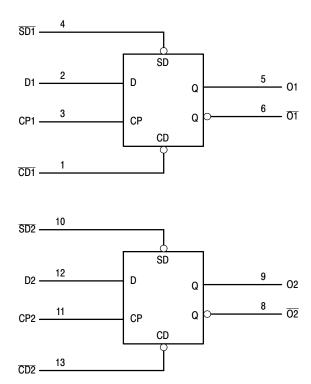
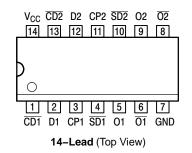
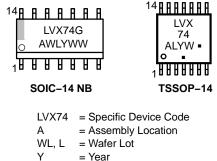


Figure 1. Logic Diagram

ON Semiconductor®


http://onsemi.com


D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

MARKING DIAGRAMS

- W, WW = Work Week
- G or = Pb-Free Package

(Note: Microdot may be in either location)

PIN NAMES				
Pins	Function			
CP1, CP2 D1, D2 CD1, CD2 SD1, SD2 On, On	Clock Pulse Inputs Data Inputs Direct Clear Inputs Direct Set Inputs Outputs			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

	INPUTS			OUTI	PUTS	
SDn	CDn	CPn	Dn	On	On	OPERATING MODE
L H	H L	X X	X X	H L	L H	Asynchronous Set Asynchronous Clear
L	L	Х	х	н	н	Undetermined
H H	H H	↑ ↑	h I	H L	L H	Load and Read Register
Н	Н	1	Х	NC	NC	Hold

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change; X = High or Low Voltage Level or Transitions are Acceptable; \uparrow = Low-to-High Transition; \uparrow = Not a Low-to-High Transition; For I_{CC} Reasons DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{in}	DC Input Voltage	-0.5 to +7.0	V
Vout	DC Output Voltage	-0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current	-20	mA
I _{OK}	Output Diode Current	±20	mA
I _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
PD	Power Dissipation	180	mW
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{in}	DC Input Voltage	0	5.5	V
Vout	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	+85	°C
$\Delta t / \Delta V$	Input Rise and Fall Time	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			v _{cc}	T _A = 25°C		$T_{A} = -40$	to 85°C		
Symbol	Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
V _{IH}	High–Level Input Voltage		2.0 3.0 3.6	1.5 2.0 2.4			1.5 2.0 2.4		V
V _{IL}	Low-Level Input Voltage		2.0 3.0 3.6			0.5 0.8 0.8		0.5 0.8 0.8	V
V _{OH}	High–Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$I_{OH} = -50\mu A$ $I_{OH} = -50\mu A$ $I_{OH} = -4m A$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		V
V _{OL}	Low-Level Output Voltage $(V_{in} = V_{IH} \text{ or } V_{IL})$	$I_{OL} = 50\mu A$ $I_{OL} = 50\mu A$ $I_{OL} = 4m A$	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44	V
l _{in}	Input Leakage Current	$V_{in} = 5.5 V \text{ or GND}$	3.6			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	$V_{in} = V_{CC}$ or GND	3.6			2.0		20.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns)

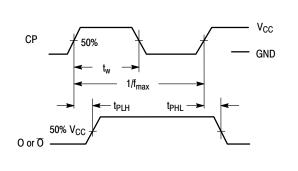
				٦ ا	Γ _A = 25°0		$T_A = -40$) to 85°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay CP to O or \overline{O}	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$		7.3 9.8	15.0 18.5	1.0 1.0	18.5 22.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$		5.7 8.2	9.7 13.2	1.0 1.0	11.5 15.0	
t _{PLH} , t _{PHL}	Propagation Delay SD or CD to O or O	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$		8.4 10.9	15.6 19.1	1.0 1.0	18.5 22.0	ns
		$V_{CC}=3.3\pm0.3V$	$C_L = 15pF$ $C_L = 50pF$		6.6 9.1	10.1 13.6	1.0 1.0	12.0 15.5	
f _{max}	Maximum Clock Frequency (50% Duty Cycle)	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	55 45	135 60		50 40		MHz
		$V_{CC}=3.3\pm0.3V$	$C_L = 15pF$ $C_L = 50pF$	95 60	145 85		80 50		
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 1)	V _{CC} = 2.7V V _{CC} = 3.3 ±0.3V	$C_L = 50 pF$ $C_L = 50 pF$			1.5 1.5		1.5 1.5	ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

TIMING REQUIREMENTS (Input t_r = t_f = 3.0ns)

	v _{cc}		Guarantee		
Symbol	Parameter	V	T _A = 25°C	$T_A = -40$ to $85^\circ C$	Unit
t _w	Minimum Pulse Width, CP	2.7V 3.3V ±0.3	8.5 6.0	10.0 7.0	ns
t _w	Minimum Pulse Width, CD or SD	2.7V 3.3V ±0.3	8.5 6.0	10.0 7.0	ns
t _{su}	Minimum Setup Time, D to CP	2.7V 3.3V ±0.3	8.0 5.5	9.5 6.5	ns
t _h	Minimum Hold Time, D to CP	2.7V 3.3V ±0.3	0.5 0.5	0.5 0.5	ns
t _{rec}	Minimum Recovery Time, SD or CD to CP	2.7V 3.3V ±0.3	6.5 5.0	7.5 5.0	ns

CAPACITIVE CHARACTERISTICS


		T _A = 25°C		$T_A = -40$ to $85^{\circ}C$			
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
Cin	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 2)		25				pF

 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/2 (per flip–flop). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 3.3$ V, Measured in SOIC Package)

			T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.5	V	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.3	-0.5	V	
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V	
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V	

SWITCHING WAVEFORMS

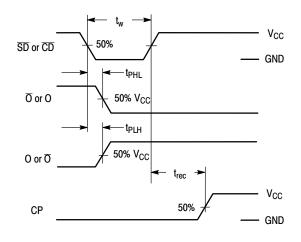


Figure 2.

Figure 3.

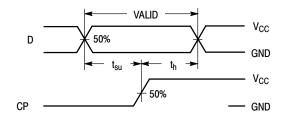
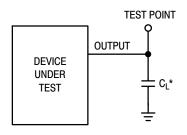
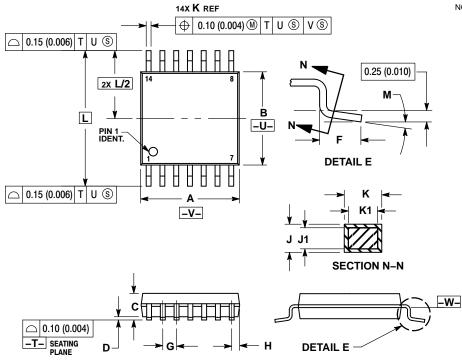



Figure 4.

TEST CIRCUIT

*Includes all probe and jig capacitance

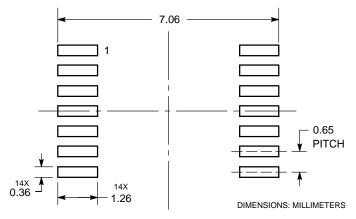

ORDERING INFORMATION

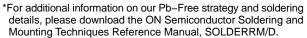
Device	Package	Shipping [†]
MC74LVX74DR2G	SOIC-14 NB (Pb-Free)	2500 Tape & Reel
MC74LVX74DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LVX74DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

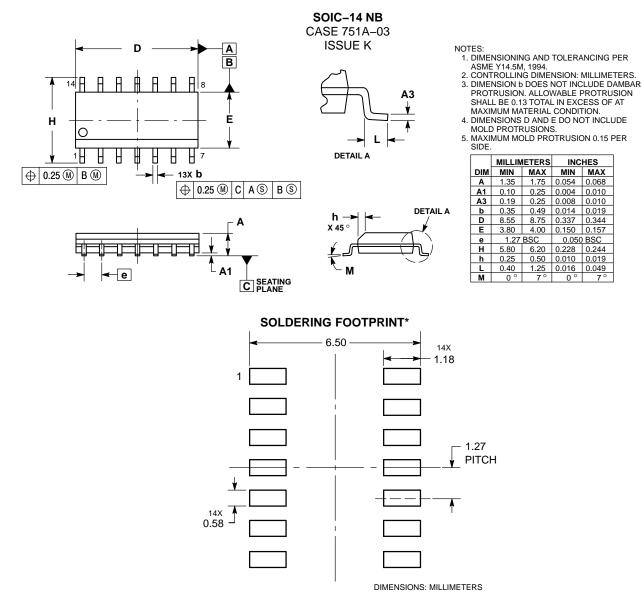
PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**




NOTES: 1. DIMENSIONING AND TOLERANCING PER

DIRENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
TERERENCE ONLY.
DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.
MILLIMETERS INCHES


	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16 0.004	0.09 0.16 0.004	0.006	
κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252	2 BSC	
М	0 °	° 8	0 °	8 °	

SOLDERING FOOTPRINT*

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at tww.onsemic.com/site/pdt/Patent-Marking.pdt. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if su

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative