2.5 V / 3.3 V, 12Gb/s Multi Level Clock/Data Input to RSECL, High Gain Receiver/Buffer/Translator with Internal Termination

Description

The NB7L216 is a differential receiver/driver with high gain output targeted for high frequency applications. The device is functionally equivalent to the NBSG16 but with much higher gain output. This highly versatile device provides 35 dB of gain up to 7 GHz.

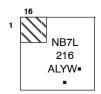
Inputs incorporate internal 50 Ω termination resistors and accept Negative ECL (NECL), Positive ECL (PECL), LVTTL, LVCMOS, CML, or LVDS. Outputs are Reduced Swing ECL (RSECL), 400 mV.

The V_{BB} pin is an internally generated voltage supply available to this device only. V_{BB} is used as a reference voltage for single-ended NECL or PECL inputs. For all single-ended input conditions, the unused complementary differential input should be connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} output should be left open.

Application notes, models and support documentation are available at www.onsemi.com.

Features

- High Gain of 35 dB from DC to 7 GHz Typical
- High IIP3: 0 dBm Typical
- 20 mV Minimum Input Voltage Swing
- Maximum Input Clock Frequency up to 8.5 GHz
- Maximum Input Data Rate up to 12 Gb/s Typical
- < 0.5 ps of RMS Clock Jitter
- < 9 ps of Data Dependent Jitter
- 120 ps Typical Propagation Delay
- 30 ps Typical Rise and Fall Times
- RSPECL Output with Operating Range:
 V_{CC} = 2.375 V to 3.465 V with V_{EE} = 0 V
- RSNECL Output with RSNECL or NECL Inputs with Operating Range: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -2.375 \text{ V}$ to -3.465 V
- RSECL Output Level (400 mV Peak-to-Peak Output),
- 50 Ω Internal Input Termination Resistors (Temperature-Coefficient of < 6.38 mΩ/°C)
- $\bullet \ \ V_{BB}-ECL\ Reference\ Voltage\ Output$
- This Device is Pb-Free, Halogen Free and is RoHS Compliant


ON Semiconductor®

www.onsemi.com

QFN-16 MN SUFFIX CASE 485G

MARKING DIAGRAM*

= Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

(Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D.

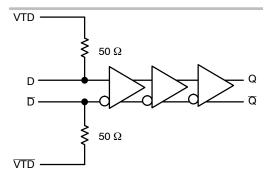


Figure 1. Functional Block Diagram

ORDERING INFORMATION

Device	Package	Shipping†
NB7L216MNG	QFN-16 (Pb-Free)	123 Units / Tube
NB7L216MNR2G	QFN-16 (Pb-Free)	3000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

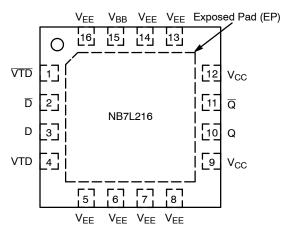


Figure 2. QFN-16 Pinout (Top View)

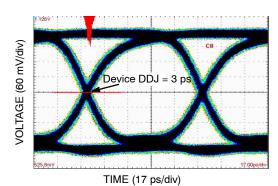


Figure 3. Typical Output Waveform at 12 Gb/s with PRBS 2²³-1 (V_{INPP} = 400 mV, Input Signal DDJ = 12 ps)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VTD	-	Internal 50 Ω termination pin. See Table 7. Note 1
2	D	LVPECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted differential input. Note 1.
3	D	LVPECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted differential input. Note 1.
4	VTD	-	Internal 50 Ω termination pin. See Table 7. Note 1.
15	V_{BB}	-	Internally generated ECL reference voltage supply.
5, 6, 7, 8, 13, 14, 16	V _{EE}	-	Negative supply voltage. All V_{EE} pins must be externally connected to power supply to guarantee proper operation.
9, 12	V _{CC}	-	Positive supply voltage. All V_{CC} pins must be externally connected to power supply to guarantee proper operation
10	Q	RSECL Output	Noninverted differential output. Typically receiver terminated with 50 Ω resistor to V _{TT} = V _{CC} – 2.0 V.
11	Q	RSECL Output	Inverted differential output. Typically receiver terminated with 50 Ω resistor to V_{TT} = V_{CC} – 2.0 V.
-	EP	-	Exposed pad (EP). Thermally exposed pad on the package bottom must be attached to a heat sinking conduit. It is recommended to connect the EP to the lower potential, V_{EE} .

^{1.} In the differential configuration when the input termination pins (VTD, VTD) are connected to a common termination voltage and if no signal is applied on D/D input then the device will be susceptible to self-oscillation.

Table 2. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model Charged Device Model	> 500 V > 10 V > 4 kV
Moisture Sensitivity (Note 2)	Pb-Free Pkg
QFN-16	Level 1
Flammability Rating Oxygen Index: 28 t	to 34 UL 94 V-0 @ 0.125 in
Transistor Count	164
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup	Test.

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	٧
V _{EE}	Negative Power Supply	V _{CC} = 0 V		-3.6	٧
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$V_I = V_{CC}$ $V_I = V_{EE}$	3.6 -3.6	V
V _{INPP}	Differential Input Voltage $ D - \overline{D} $			2.8	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA
I _{OUT}	Output Current	Continuous Surge		25 50	mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 2)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 4)	QFN-16	4	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
 JEDEC standard multilayer board – 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, CLOCK INPUTS, RSECL OUTPUTS ($V_{CC} = 2.375 \text{ V to } 3.465 \text{ V}, V_{EE} = 0 \text{ V}$)

		−40 °C				25 °C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current (VTD/VTD open)		27	35		27	35		27	35	mA
V _{OH}	Output HIGH Voltage (Note 1 and 2)	V _{CC} -1040	V _{CC} -980	V _{CC} -940	V _{CC} -1000	V _{CC} -950	V _{CC} -900	V _{CC} -950	V _{CC} -900	V _{CC} -850	mV
V _{OL}	Output LOW Voltage (Note 1 and 2)	V _{CC} -1520	V _{CC} -1430	V _{CC} -1320	V _{CC} -1470	V _{CC} -1370	V _{CC} -1270	V _{CC} -1440	V _{CC} -1340	V _{CC} -1240	mV
DIFFERE	NTIAL INPUT DRIVEN SINGLE-END	ED (see F	igures 1	4 and 16)							
V _{TH}	Input Threshold Reference Voltage Range (Notes 3 and 5)	800		V _{CC} -10	800		V _{CC} -10	800		V _{CC} -10	mV
V_{IH}	Single-ended Input HIGH Voltage	1105		V_{CC}	1105		V_{CC}	1105		V_{CC}	mV
V_{IL}	Single-ended Input LOW Voltage	V _{EE}		V _{th} –10	V _{EE}		V _{th} –10	V _{EE}		V _{th} –10	mV
V _{ISE}	Single-Ended Input Voltage (V _{IH} -V _{IL})	20		V _{CC}	20		V _{CC}	20		V _{CC}	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENT	IALLY (se	ee Figure	s 15 and	17)	•	•	•	•	•	•
V_{IHD}	Differential Input HIGH Voltage (Note 5)	1105		V _{CC}	1105		V _{CC}	1105		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage (Note 5)	V _{EE}		V _{CC} -10	V _{EE}		V _{CC} -10	V _{EE}		V _{CC} -10	mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Notes 5 and 6)	800		V _{CC} -5	800		V _{CC} –5	800		V _{CC} –5	mV
V _{ID}	Differential Input Voltage (V _{IHD} -V _{ILD})	10		2500	10		2500	10		2500	mV
V_{IO}	Input Offset Voltage (Note 4)	-5	0	+5	-5	0	+5	-5	0	+5	mV
V _{BB}	Internally Generated Reference Voltage Supply (Only 3 V – 3.6 V Supply Load with –100 µA)	V _{CC} -1425	V _{CC} -1345	V _{CC} -1265	V _{CC} -1425	V _{CC} -1345	V _{CC} -1265	V _{CC} -1425	V _{CC} -1345	V _{CC} -1265	mV
I _{IH}	Input HIGH Current D/Db (VTD/VTD Open)	0	20	100	0	20	100	0	20	100	μΑ
I _{IL}	Input LOW Current D/Db (VTD/VTD Open)	-25	10	75	-25	10	75	-25	10	75	μΑ
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
R _{T_Coef}	Internal Input Termination Resistor Temperature Coefficient		6.38			6.38			6.38		mΩ/°C

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Outputs evaluated with 50 Ω resistors to V $_{TT}$ = V $_{CC}$ 2.0 V for proper operation.
- Input and output parameters vary 1:1 with V_{CC}.
 V_{TH} is applied to the complementary input when operating in single-ended mode. V_{th} = (V_{IH} V_{IL}) / 2.

- 4. Typical standard deviation of input offset voltage is 1.76 mV.
 5. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.
 6. V_{IHD}, V_{ILD}, V_{ID} and V_{CMR} parameters must be complied with simultaneously.
- 7. V_{CMR} min varies 1:1 with V_{EE} , V_{CMR} max varies 1:1 with V_{CC} . The V_{CMR} range is referenced to the most positive side of the differential input signal.

Table 5. AC CHARACTERISTICS (V_{CC} = 2.375 V to 3.465 V, V_{EE} = 0 V; (Note 1))

			-40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ $V_{INPPmin}$) $f_{in} \le 7.0 \text{ GHz}$ $f_{in} \le 8.5 \text{ Ghz}$ (See Figure 4)	275 100	380 250		275 100	380 250		275 100	380 250		mV
f _{DATA}	Maximum Operating Data Rate	10	12		10	12		10	12		Gb/s
S21	Power Gain DC to 7 GHz		35			35			35		dB
S11	Input Return Loss @ 7 GHz		-10			-10			-10		dB
S22	Output Return Loss @ 7 GHz		-5			-5			-5		dB
S12	Reverse Isolation (Differential Configuration)		-25			-25			-25		dB
IIP3	Input Third Order Intercept		0			0			0		dBm
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential @ 1 GHz	60	120	180	60	120	180	60	120	180	ps
t _{SKEW}	Duty Cycle Skew (Note 1) Device to Device Skew (Note 6)		2 5	10 20		2 5	10 20		2 5	10 20	ps
[†] JITTER	RMS Random Clock Jitter $ f_{in} \leq 8.5 \text{ Ghz (Note 4)} $ Peak-to-Peak Data Dependent Jitter (Note 5) $ f_{DATA} = 3.5 \text{ Gb/s} $ $ f_{DATA} = 5.0 \text{ Gb/s} $ $ f_{DATA} = 10 \text{ Gb/s} $ $ f_{DATA} = 12 \text{ Gb/s} $		0.1 1 3 4 4	0.5 7 9 9		0.1 1 3 4 4	0.5 7 9 9		0.1 1 3 4 4	0.5 7 9 9	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 3 and Figure 12)	20		2500	20		2500	20		2500	mV
t _r t _f	Output Rise/Fall Times @ 0.5 Ghz (20% – 80%) Q, Q		30	45		30	45		30	45	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Measured by forcing $V_{INPPmin}$ from a 50% duty cycle clock source. All loading with an external $R_L = 50 \Omega$ to $V_{TT} = V_{CC} 2.0 V$. Input edge rates 40 ps (20% 80%).
- 2. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+ @ 1 GHz.
- 3. V_{INPP} (MAX) cannot exceed V_{CC} V_{EE}. Input voltage swing is a single-ended measurement operating in differential mode.
- 4. Additive RMS jitter with 50% duty cycle clock signal.
- 5. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS 223-1.
- 6. Device to device skew is measured between outputs under identical transition @ 1 GHz.

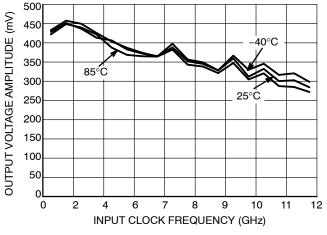


Figure 4. Output Voltage Amplitude (V_{OUTPP}) versus Input Clock Frequency (f_{IN}) and Temperature (V_{INPP} = 400 mV, V_{CC} = 3.3 V and V_{EE} = 0 V)

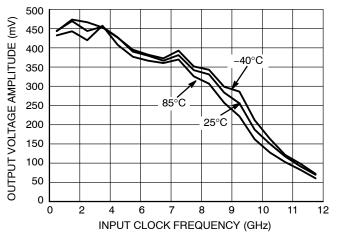


Figure 5. Output Voltage Amplitude (V_{OUTPP}) versus Input Clock Frequency (f_{IN}) and Temperature ($V_{INPP} = 20 \text{ mV}$, $V_{CC} = 3.3 \text{ V}$ and $V_{EE} = 0 \text{ V}$)

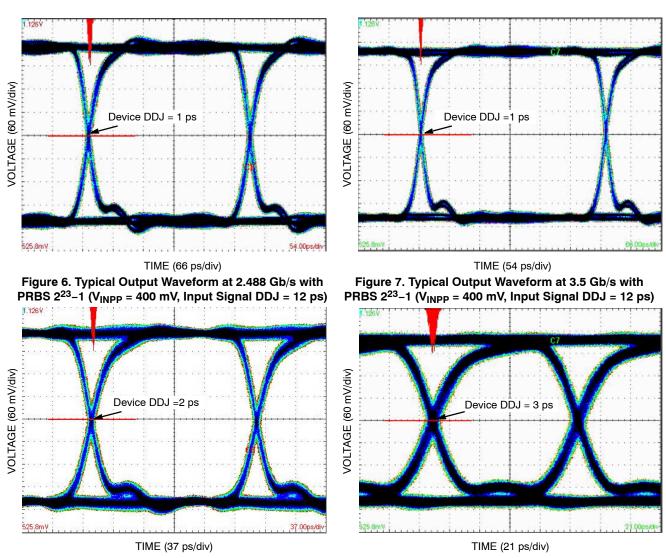


Figure 8. Typical Output Waveform at 5 Gb/s with PRBS 2^{23} -1 (V_{INPP} = 400 mV, Input Signal DDJ = 12 ps)

Figure 9. Typical Output Waveform at 10 Gb/s with PRBS 2^{23} -1 (V_{INPP} = 400 mV, Input Signal DDJ = 12 ps)

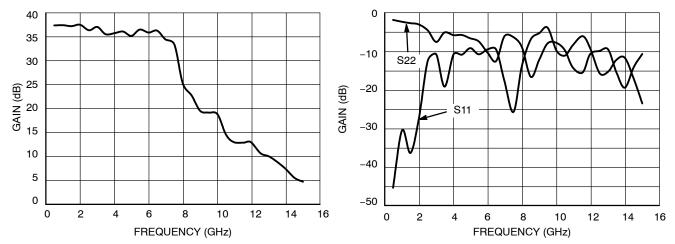


Figure 10. Small Signal Gain - S21 Magnitude*

Figure 11. Input and Output Reflection – S11 and S22 Magnitude*

^{*} T_A = +25°C, V_{CC} = 3.3 V, V_{EE} =0 V, P_{IN} = -44 dBm, Z_S = Z_L = 50 Ω , input and output matching network is not included.

Table 6. TYPICAL DEVICE S-PARAMETERS

Frequency		S11			S21		S12			S22			
(Hz)	dbS11	S11	≮S11	dbS21	S21	≮S21	dbS12	S12	≮S12	dbS22	S22	∢S22	
4.97E+08	-45.2	0.005	-88.5	37.2	72.799	-33.2	-72.3	0.001	-139.1	-2.5	0.749	157.4	
1.02E+09	-30.4	0.030	-134.7	37.3	73.145	-68.4	-45.8	0.005	129.8	-2.9	0.714	154.3	
1.51E+09	-36.2	0.015	-146.5	37.1	71.433	-105.4	-43.3	0.007	98.5	-2.9	0.717	132.8	
2.00E+09	-27.4	0.042	25.7	37.4	74.061	-139.0	-37.1	0.014	91.8	-3.5	0.666	107.1	
2.52E+09	-12.3	0.244	-27.7	36.2	64.810	-179.5	-29.9	0.032	54.4	-4.4	0.599	92.1	
3.01E+09	-10.6	0.295	-83.8	36.9	70.102	144.5	-26.1	0.050	9.4	-6.3	0.485	77.3	
3.50E+09	-19.0	0.112	-22.1	35.4	58.933	99.9	-28.3	0.038	25.9	-5.0	0.566	67.9	
4.02E+09	-10.6	0.294	-120.3	35.6	60.437	73.8	-24.8	0.058	-32.6	-7.6	0.417	54.2	
4.51E+09	-10.7	0.291	167.4	36.0	62.843	41.1	-22.5	0.075	-68.3	-13.9	0.201	70.2	
4.99E+09	-9.0	0.354	87.1	35.1	56.576	14.2	-25.2	0.055	-107.2	-8.7	0.367	81.2	
5.48E+09	-10.6	0.294	62.7	36.4	65.812	-16.1	-24.3	0.061	-121.4	-8.0	0.398	50.4	
6.01E+09	-9.3	0.341	108.2	35.8	61.327	-72.8	-24.5	0.060	-125.7	-8.0	0.397	-0.9	
6.49E+09	-9.4	0.340	59.4	36.2	64.212	-119.4	-21.9	0.080	-152.4	-12.5	0.237	-27.2	
6.98E+09	-17.5	0.133	25.5	34.3	52.039	-141.5	-22.7	0.073	177.5	-7.4	0.428	-32.2	
7.51E+09	-25.6	0.053	107.9	33.2	45.861	164.6	-24.4	0.060	165.7	-7.0	0.445	-37.9	
7.99E+09	-13.7	0.206	146.5	25.2	18.093	133.6	-21.5	0.084	152.8	-7.6	0.416	-54.7	
8.52E+09	-6.7	0.462	117.9	22.6	13.434	116.2	-19.4	0.107	120.7	-12.1	0.249	-73.7	
9.00E+09	-5.2	0.552	106.2	19.4	9.336	102.0	-19.0	0.112	109.9	-12.2	0.246	-62.5	
9.49E+09	-3.7	0.652	71.1	19.0	8.937	61.1	-19.4	0.107	62.0	-11.5	0.267	-100.2	
1.00E+10	-9.7	0.326	46.2	18.7	8.595	18.6	-24.0	0.063	50.6	-10.4	0.301	-117.0	
1.05E+10	-11.0	0.283	35.8	14.5	5.298	-13.3	-25.9	0.051	12.9	-10.8	0.288	-172.0	
1.10E+10	-8.3	0.384	7.2	12.9	4.408	-9.6	-29.4	0.034	21.1	-13.4	0.213	74.0	
1.15E+10	-5.9	0.506	-0.4	12.7	4.339	-33.7	-21.4	0.085	36.3	-21.4	0.085	-148.6	
1.20E+10	-9.0	0.356	-23.8	12.9	4.395	-63.4	-19.4	0.107	-9.5	-13.4	0.214	159.5	
1.25E+10	-15.6	0.166	-46.9	10.5	3.360	-97.8	-21.0	0.089	-39.0	-12.4	0.239	169.2	
1.30E+10	-15.1	0.175	-83.0	9.9	3.121	-119.7	-24.0	0.063	-39.9	-11.3	0.272	171.6	
1.35E+10	-12.0	0.250	-96.5	8.7	2.728	-148.9	-22.0	0.079	-39.1	-14.9	0.181	177.8	
1.40E+10	-11.5	0.265	-105.9	7.3	2.314	-167.1	-18.6	0.118	-74.2	-18.4	0.120	140.3	
1.45E+10	-17.0	0.140	-97.8	5.4	1.856	167.6	-20.1	0.099	-107.0	-15.7	0.163	98.2	
1.50E+10	-23.4	0.068	-108.9	4.6	1.695	145.0	-20.2	0.098	-128.1	-11.2	0.274	96.1	

NOTE: $T_A = +25^{\circ}C$, $V_{CC}=3.3V$, $V_{EE}=0$ V, $P_{IN}=-44$ dBm, $Z_S=Z_L=50$ Ω , input and output matching network is not included.

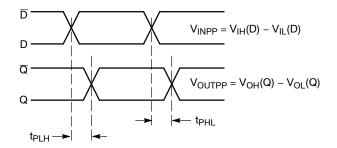


Figure 12. AC Reference Measurement

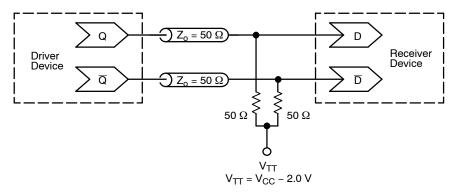


Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

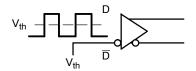


Figure 14. Differential Input Driven Single-Ended

Figure 15. Differential Inputs Driven Differentially

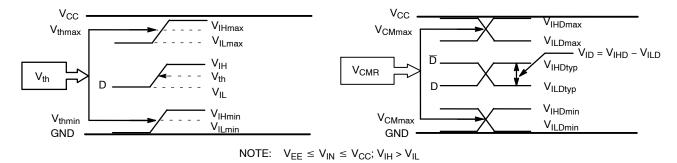


Figure 16. V_{th} Diagram

Figure 17. V_{CMR} Diagram

APPLICATION INFORMATION

All NB7L216 inputs can accept PECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are minimum input swing of 75 mV and the maximum input swing of 2500 mV. Within these conditions, the input voltage can range from V_{CC} to 1.2 V. Examples interfaces are illustrated below in a 50 Ω environment (Z = 50 Ω). For output termination and interface, refer to application note <u>AND8020/D</u>.

Table 7. INTERFACING OPTIONS

Interfacing Options	Connections
CML	Connect VTD and VTD to V _{CC} (See Figure 18)
LVDS	Connect VTD and VTD Together (See Figure 20)
AC-COUPLED	Bias VTD and VTD Inputs within Common Mode Range (V _{CMR}) (See Figure 19)
RSECL, PECL, NECL	Standard ECL Termination Techniques (See Figure 13)
LVTTL, LVCMOS	An External Voltage (V_{THR}) should be Applied to the Unused Complementary Differential Input. Nominal V_{THR} is 1.5 V for LVTTL and V_{CC} / 2 for LVCMOS Inputs. This Voltage must be within the V_{THR} Specification (See Figure 21)

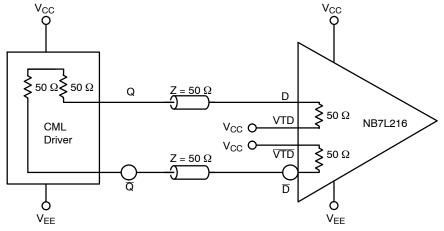
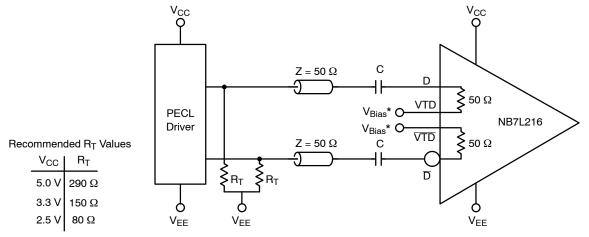



Figure 18. CML to NB7L216 Interface

 $^*V_{Bias}$ must be within common mode range limits (V_{CMR})

Figure 19. PECL to NB7L216 Interface

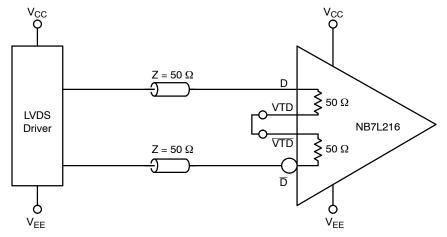


Figure 20. LVDS to NB7L216 Interface

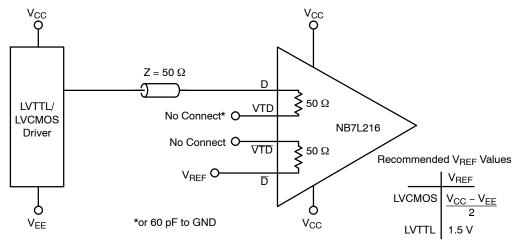
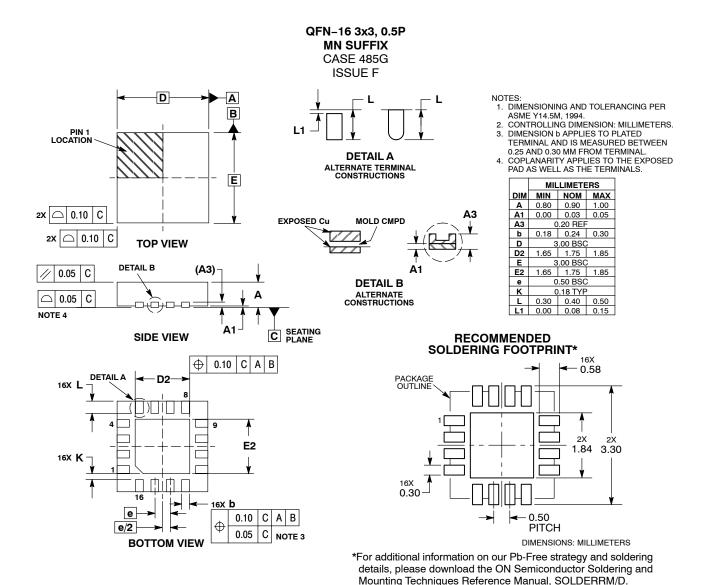



Figure 21. LVCMOS/LVTTL to NB7L216 Interface

PACKAGE DIMENSIONS

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

Phone: 81-3-5817-1050

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative