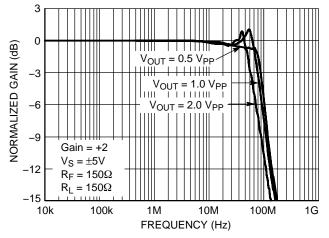
500 MHz Voltage Feedback Op Amp

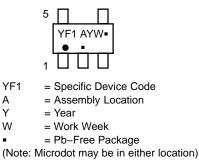

NCS2551 is a 500 MHz voltage feedback monolithic operational amplifier featuring high slew rate and low differential gain and phase error. The voltage feedback architecture allows for a superior bandwidth and low power consumption.

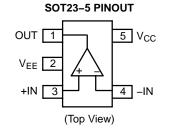
Features

- -3.0 dB Small Signal BW (A_V = +2.0, V_O = 0.5 V_{p-p}) 500 MHz Typ
- Slew Rate 1400 V/µs
- Supply Current 5.5 mA
- Input Referred Voltage Noise 6.0 nV/\sqrt{Hz}
- THD -62 dBc (f = 5.0 MHz, $V_0 = 2.0 V_{p-p}$)
- Output Current 100 mA
- Pin Compatible with AD8055, TSH341
- This is a Pb–Free Device

Applications

- Line Drivers
- Radar/Communication Receivers


ON Semiconductor®


http://onsemi.com

SOT23-5 (TSOP-5) SN SUFFIX CASE 483

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin (SOT23–5/SC70)	Symbol	Function	Equivalent Circuit
1	OUT	Output	
2	V_{EE}	Negative Power Supply	
3	+IN	Non-inverted Input	VCC ESD -IN VEE
4	–IN	Inverted Input	See Above
5	V _{CC}	Positive Power Supply	

Figure 2. Simplified Device Schematic

ATTRIBUTES

Characteristics	Value
ESD Human Body Model Machine Model Charged Device Model	2.0 kV 200 V 1.0 kV
Moisture Sensitivity (Note 1)	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _S	11	Vdc
Input Voltage Range	VI	$\leq V_{S}$	Vdc
Input Differential Voltage Range	V _{ID}	$\leq V_{S}$	Vdc
Output Current	Ι _Ο	100	mA
Maximum Junction Temperature (Note 2)	TJ	150	°C
Operating Ambient Temperature	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-60 to +150	°C
Power Dissipation	PD	(See Graph)	mW
Thermal Resistance, Junction-to-Air	$R_{ extsf{ heta}JA}$	158	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is 150°C. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device damage.

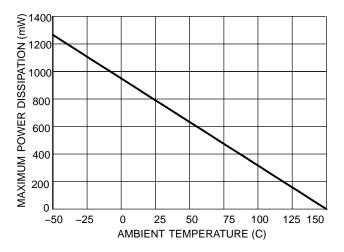


Figure 3. Power Dissipation vs. Temperature

AC ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = -40°C to +85°C, R_L = 150 Ω to GND, R_F = 150 Ω , A_V = +2.0, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
FREQUEN	CY DOMAIN PERFORMANCE					
BW	Bandwidth 3.0 dB Small Signal 3.0 dB Large Signal	A_V = +2.0, V_O = 0.5 V_{p-p} A_V = +2.0, V_O = 2.0 V_{p-p}		500 300		MHz
GF _{0.1dB}	0.1 dB Gain Flatness Bandwidth	A _V = +2.0		15		MHz
dG	Differential Gain	A_V = +2.0, R_L = 150 Ω , f = 3.58 MHz		0.06		%
dP	Differential Phase	A_V = +2.0, R_L = 150 Ω , f = 3.58 MHz		0.06		0
TIME DOM	AIN RESPONSE	-			-	
SR	Slew Rate	$A_V = +2.0, V_{step} = 2.0 V$		1400		V/μs
t _s	Settling Time 0.1%	A _V = +2.0, V _{step} = 2.0 V		10		ns

t_r t_f Rise and Fall Time

THD	Total Harmonic Distortion	f = 5.0 MHz, V_O = 2.0 V_{p-p}	-62	dB
HD2	2nd Harmonic Distortion	f = 5.0 MHz, V_O = 2.0 V_{p-p}	-68	dBc
HD3	3rd Harmonic Distortion	f = 5.0 MHz, V_O = 2.0 V_{p-p}	-63	dBc
IP3	Third–Order Intercept	f = 10 MHz, V_O = 1.0 V_{p-p}	40	dBm
SFDR	Spurious-Free Dynamic Range	f = 5.0 MHz, V_0 = 2.0 V_{p-p}	63	dBc
e _N	Input Referred Voltage Noise	f = 1.0 MHz	6.0	nV/\sqrt{Hz}
i _N	Input Referred Current Noise	f = 1.0 MHz	3.0	pA/\sqrt{Hz}

(10%–90%) $A_V =$ +2.0, $V_{step} = 2.0 \ V$

2.4

ns

DC ELECTRICAL CHARACTERISTICS (V _{CC} = +5.0 V, V _{EE} = -5.0 V, T _A = -40°C to +85°C, R _L = 150 Ω to GND, R _F = 150 Ω ,	
A_V = +2.0, Enable is left open, unless otherwise specified).	

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
DC PERFO	RMANCE					
V _{IO}	Input Offset Voltage		-10	0	+10	mV
$\Delta V_{IO} / \Delta T$	Input Offset Voltage Temperature Coefficient			6.0		μV/°C
I _{IB}	Input Bias Current	$V_0 = 0 V$		± 3.2	±20	μΑ
$\Delta I_{\rm IB} / \Delta T$	Input Bias Current Temperature Coefficient	V _O = 0 V		±40		nA/°C
INPUT CHA	ARACTERISTICS					
V _{CM}	Input Common Mode Voltage Range (Note 3)		±3.0	±4.0		V
CMRR	Common Mode Rejection Ratio	(See Graph)	40	50		dB
R _{IN}	Input Resistance			4.5		MΩ
C _{IN}	Differential Input Capacitance			1.0		pF
OUTPUT C	HARACTERISTICS					
R _{OUT}	Output Resistance	Closed Loop Open Loop		0.1 17		Ω
Vo	Output Voltage Range		± 3.0	±4.0		V
Ι _Ο	Output Current		±50	±100		mA
POWER SU	JPPLY		-			
VS	Operating Voltage Supply			10		V
۱ _S	Power Supply Current		2.0	5.5	10	mA
PSRR	Power Supply Rejection Ratio	(See Graph)	40	60		dB

3. Guaranteed by design and/or characterization.

AC ELECTRICAL CHARACTERISTICS (V_{CC} = +2.5 V, V_{EE} = -2.5 V, T_A = -40°C to +85°C, R_L = 150 Ω to GND, R_F = 150 Ω , A_V = +2.0, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Тур	Мах	Unit
FREQUENC	Y DOMAIN PERFORMANCE					
BW	Bandwidth 3.0 dB Small Signal 3.0 dB Large Signal	$A_V = +2.0, V_O = 0.5 V_{p-p}$ $A_V = +2.0, V_O = 1.0 V_{p-p}$		400 200		MHz
GF _{0.1dB}	0.1 dB Gain Flatness Bandwidth	A _V = +2.0		10		MHz
dG	Differential Gain	A_V = +2.0, R_L = 150 Ω , f = 3.58 MHz		0.07		%
dP	Differential Phase	A_V = +2.0, R_L = 150 Ω,f = 3.58 MHz		0.06		0
TIME DOM	AIN RESPONSE					
SR	Slew Rate	$A_V = +2.0, V_{step} = 1.0 V$		800		V/μs
t _s	Settling Time 0.1%	A _V = +2.0, V _{step} = 1.0 V		10		ns
t _r t _f	Rise and Fall Time	(10%–90%) A_V = +2.0, V_{step} = 1.0 V		2.2		ns

HARMONIC/NOISE PERFORMANCE

THD	Total Harmonic Distortion	f = 5.0 MHz, V_O = 1.0 V_{p-p}	-59	dB
HD2	2nd Harmonic Distortion	f = 5.0 MHz, V_O = 1.0 V_{p-p}	-60	dBc
HD3	3rd Harmonic Distortion	f = 5.0 MHz, V_O = 1.0 V_{p-p}	-67	dBc
IP3	Third–Order Intercept	f = 10 MHz, $V_O = 0.5 V_{p-p}$	35	dBm
SFDR	Spurious-Free Dynamic Range	f = 5.0 MHz, V_0 = 1.0 V_{p-p}	60	dBc
e _N	Input Referred Voltage Noise	f = 1.0 MHz	6.0	nV/\sqrt{Hz}
i _N	Input Referred Current Noise	f = 1.0 MHz	3.0	pA/\sqrt{Hz}

DC ELECTRICAL CHARACTERISTICS (V _{CC} = +2.5 V, V _{EE} = -2.5 V, T _A = -40°C to +85°C, R _L = 150 Ω to GND, R _F = 150 Ω ,	
A_V = +2.0, Enable is left open, unless otherwise specified).	

Symbol	Characteristic	Conditions	Min	Тур	Мах	Unit
DC PERFO	RMANCE					
V _{IO}	Input Offset Voltage		-10	0	+10	mV
$\Delta V_{IO} / \Delta T$	Input Offset Voltage Temperature Coefficient			6.0		μV/°C
I _{IB}	Input Bias Current	$V_0 = 0 V$		± 3.2	±20	μΑ
$\Delta I_{IB} / \Delta T$	Input Bias Current Temperature Coefficient	$V_{O} = 0 V$		±40		nA/∘C
INPUT CHA	ARACTERISTICS					
V _{CM}	Input Common Mode Voltage Range (Note 3)		±0.9	± 1.5		V
CMRR	Common Mode Rejection Ratio	(See Graph)	40	50		dB
R _{IN}	Input Resistance			4.5		MΩ
C _{IN}	Differential Input Capacitance			1.0		pF
оитрит с	HARACTERISTICS					
R _{OUT}	Output Resistance	Closed Loop Open Loop		0.1 17		Ω
Vo	Output Voltage Range		±0.9	±1.5		V
Ι _Ο	Output Current		±50	±100		mA
POWER SU	JPPLY		-			
VS	Operating Voltage Supply			5.0		V
I _S	Power Supply Current		2.0	5.2	10	mA
PSRR	Power Supply Rejection Ratio	(See Graph)	40	60		dB

4. Guaranteed by design and/or characterization.

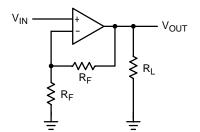
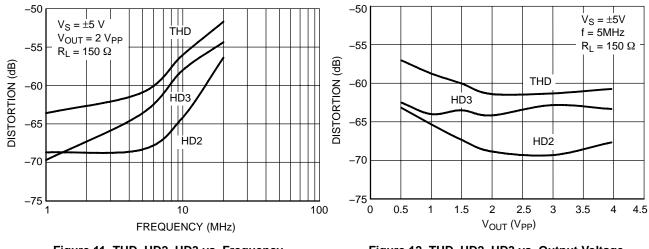



Figure 4. Typical Test Setup (A_V = +2.0, R_F = 150 k Ω , R_L = 150 Ω)

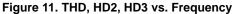


Figure 12. THD, HD2, HD3 vs. Output Voltage

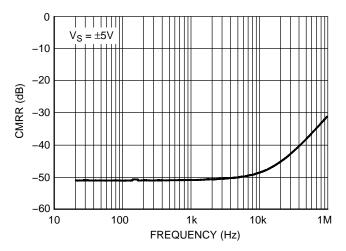
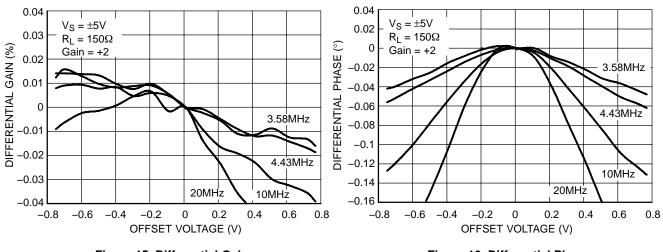


Figure 13. CMRR vs. Frequency

0 -10 -20 (g) -30 WS -40 -50 -60 -70


Figure 14. PSRR vs. Frequency

1M

FREQUENCY (Hz)

10M

100M

______ 10k 100k

Figure 15. Differential Gain

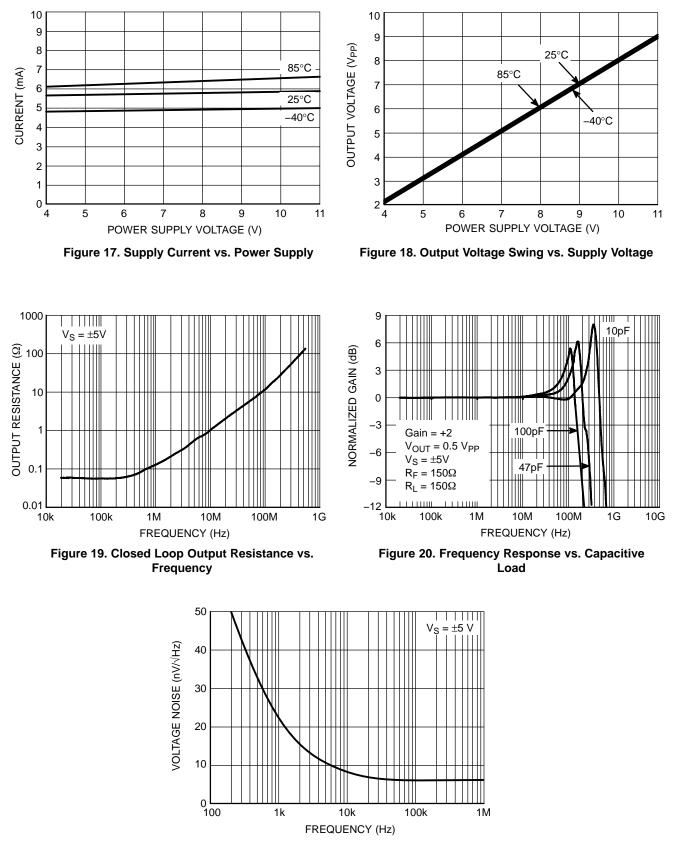


Figure 21. Input Referred Voltage Noise vs. Frequency

Printed Circuit Board Layout Techniques

Proper high speed PCB design rules should be used for all wideband amplifiers as the PCB parasitics can affect the overall performance. Most important are stray capacitances at the output and inverting input nodes as it can effect peaking and bandwidth. A space (3/16" is plenty) should be left around the signal lines to minimize coupling. Also, signal lines connecting the feedback and gain resistors should be short enough so that their associated inductance does not cause high frequency gain errors. Line lengths less than 1/4" are recommended.

Video Performance

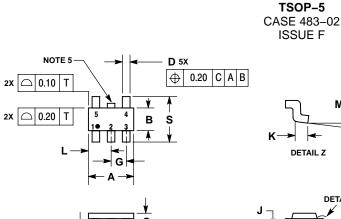
This device designed to provide good performance with NTSC, PAL, and HDTV video signals. Best performance is obtained with back terminated loads as performance is degraded as the load is increased. The back termination reduces reflections from the transmission line and effectively masks transmission line and other parasitic capacitances from the amplifier output stage.

ESD Protection

All device pins have limited ESD protection using internal diodes to power supplies as specified in the attributes table (see Figure 22). These diodes provide moderate protection to input overdrive voltages above the supplies. The ESD diodes can support high input currents with current limiting series resistors. Keep these resistor values as low as possible since high values degrade both noise performance and frequency response. Under closed–loop operation, the ESD diodes have no effect on circuit performance. However, under certain conditions the ESD diodes will be evident. If the device is driven into a slewing condition, the ESD diodes will clamp large differential voltages until the feedback loop restores closed–loop operation. Also, if the device is powered down and a large input signal is applied, the ESD diodes will conduct.

NOTE: Human Body Model for +IN and –IN pins are rated at 0.8kV while all other pins are rated at 2.0kV.



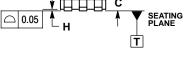

Figure 22. Internal ESD Protection

ORDERING INFORMATION

Device	Package	Shipping [†]
NCS2551SNT1G	SOT23–5 (TSOP–5) (Pb–Free)	3000/Tape & Reel

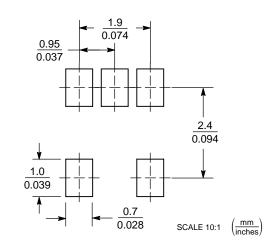
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


NOTES: 1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES 2 3. LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS

OF BASE MATERIAL. DIMENSIONS A AND B DO NOT INCLUDE 4. MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED 5 IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS	
DIM	MIN	MAX
Α	3.00 BSC	
В	1.50 BSC	
С	0.90	1.10
D	0.25	0.50
G	0.95 BSC	
Н	0.01	0.10
J	0.10	0.26
к	0.20	0.60
L	1.25	1.55
М	0 °	10 °
S	2.50	3.00

SOLDERING FOOTPRINT*

DETAIL Z

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation of guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters, which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical expents. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative