NSDEMN11XV6T1, NSDEMN11XV6T5

Common Cathode Quad Array Switching Diode

This Common Cathode Epitaxial Planar Quad Diode is designed for use in ultra high speed switching applications. This device is housed in the SOT–563 package which is designed for low power surface mount applications, where board space is at a premium.

Features

- Fast t_{rr}
- Low C_D
- Pb–Free Packages are Available

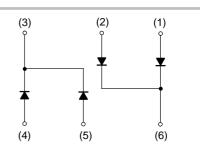
MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	80	Vdc
Peak Reverse Voltage	V _{RM}	80	Vdc
Forward Current	١ _F	100	mAdc
Peak Forward Current	I _{FM}	300	mAdc
Peak Forward Surge Current	I _{FSM} (Note 1)	2.0	Adc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD357 (Note 2) 2.9mW mW/°CDerate above 25°CPD350 (Note 2)mW/°CThermal Resistance, Junction-to-AmbientR $_{\theta JA}$ 350 (Note 2)°C/WCharacteristic (Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD500 (Note 2)mW/°CDerate above 25°C4.0mW/°C				
Derate above 25°C(Note 2) 2.9 (Note 2)mW/°CThermal Resistance, Junction-to-Ambient $R_{\theta JA}$ 350 (Note 2)°C/WCharacteristic (Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°C P_D 500 (Note 2)mW/°C		Symbol	Мах	Unit
Derate above 25°C2.9 (Note 2)mW/°CThermal Resistance, Junction-to-Ambient $R_{\theta JA}$ 350 (Note 2)°C/WCharacteristic (Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD500 (Note 2)mW	Total Device Dissipation $@T_A = 25^{\circ}C$	PD		mW
Characteristic (Both Junctions Heated) Symbol Max Unit Total Device Dissipation @T _A = 25°C P _D 500 (Note 2) mW	Derate above 25°C		`2.9 ´	mW/°C
(Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD500 (Note 2)mW	Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}		°C/W
Total Device Dissipation $@T_A = 25^{\circ}C$ P_D500 (Note 2)mW	Characteristic			
(Note 2)	(Both Junctions Heated)	Symbol	Max	Unit
	Total Device Dissipation $@T_A = 25^{\circ}C$	PD		mW
	Derate above 25°C		· · · ·	mW/⁰C
(Note 2)				
Thermal Resistance, Junction-to-Ambient $R_{\theta JA}$ 250 (Note 2)°C/W	Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}		°C/W
Junction and Storage Temperature T_J , T_{stg} -55 to +150 °C				

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. t = 1 μS

2. FR-4 @ Minimum Pad

ON Semiconductor®

http://onsemi.com

CASE 463A PLASTIC

MARKING DIAGRAM

N9 = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSDEMN11XV6T1	SOT-563	4000/Tape & Reel
NSDEMN11XV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NSDEMN11XV6T5	SOT-563	8000/Tape & Reel
NSDEMN11XV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NSDEMN11XV6T1, NSDEMN11XV6T5

Characteristic	Symbol	Condition	Min	Max	Unit
Reverse Voltage Leakage Current	I _R	V _R = 70 V	-	0.1	μAdc
Forward Voltage	V _F	I _F = 100 mA	-	1.2	Vdc
Reverse Breakdown Voltage	V _R	I _R = 100 μA	80	-	Vdc
Diode Capacitance	CD	V _R = 6.0 V, f = 1.0 MHz	-	3.5	pF
Reverse Recovery Time	t _{rr} (Note 3)	$I_F = 5.0 \text{ mA}, V_R = 6.0 \text{ V}, R_L = 100 \Omega, I_{rr} = 0.1 I_R$	-	4.0	ns

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

3. t_{rr} Test Circuit on following page.

TYPICAL ELECTRICAL CHARACTERISTICS

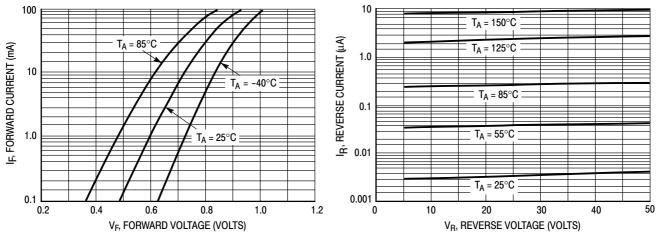


Figure 1. Forward Voltage

Figure 2. Reverse Current

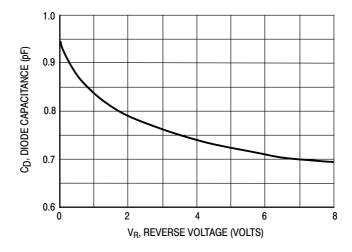


Figure 3. Diode Capacitance

NSDEMN11XV6T1, NSDEMN11XV6T5

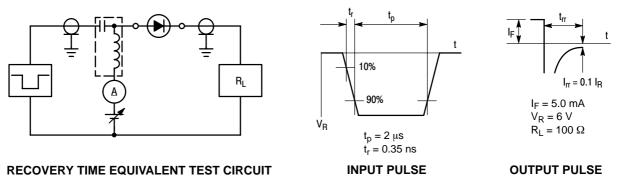
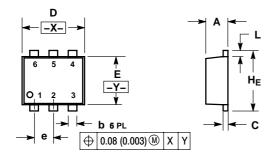
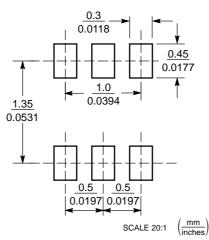



Figure 4. Reverse Recovery Time Test Circuit for the NSDEMN11XV6T1

NSDEMN11XV6T1, NSDEMN11XV6T5

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A-01 ISSUE F


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

CONTROLLING DIMENSION: MILLIMETERS 2

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS 3. IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
Е	1.10	1.20	1.30	0.043	0.047	0.051
е	0.5 BSC		0.02 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and actual performance may liability of the second to the second intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, ad distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, and claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative