## **Small Signal MOSFET** 20 V, Dual N-Channel, SC-88

# ESD Protection

## Features

- Small Footprint (2 x 2 mm)
- Low Gate Charge N–Channel Device
- ESD Protected Gate
- Same Package as SC-70 (6 Leads)
- AEC-Q101 Qualified and PPAP Capable NVJD4401N
- These Devices are Pb-Free and are RoHS Compliant

## Applications

- Load Power Switching
- Li-Ion Battery Supplied Devices
- Cell Phones, Media Players, Digital Cameras, PDAs
- DC–DC Conversion

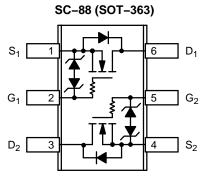
## **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise stated)

| MAXIMUM NATINGO (1) = 25 C dilless otherwise stated) |                                   |                       |                                   |               |    |  |
|------------------------------------------------------|-----------------------------------|-----------------------|-----------------------------------|---------------|----|--|
| Parame                                               | Symbol                            | Value                 | Unit                              |               |    |  |
| Drain-to-Source Voltage                              | V <sub>DSS</sub>                  | 20                    | V                                 |               |    |  |
| Gate-to-Source Voltage                               | 1                                 |                       | V <sub>GS</sub>                   | ±12           | V  |  |
| Continuous Drain<br>Current                          | I <sub>D</sub>                    | 0.63                  | А                                 |               |    |  |
| (Based on $R_{\theta JA}$ )                          | State                             | T <sub>A</sub> = 85°C | 1                                 | 0.46          |    |  |
| Power Dissipation                                    | Steady                            | $T_A = 25^{\circ}C$   | PD                                | 0.27          | W  |  |
| (based on $R_{\theta JA}$ )                          | (Based on $R_{\theta JA}$ ) State |                       |                                   | 0.14          |    |  |
| Continuous Drain<br>Current                          | Steady<br>State                   | $T_A = 25^{\circ}C$   | I <sub>D</sub>                    | 0.91          | А  |  |
| (Based on $R_{\theta JL}$ )                          | Sidle                             | T <sub>A</sub> = 85°C |                                   | 0.65          |    |  |
| Power Dissipation                                    |                                   |                       |                                   | 0.55          | W  |  |
| (Based on R <sub>θJL</sub> )                         | $T_A = 85^{\circ}C$               | PD                    | 0.29                              |               |    |  |
| Pulsed Drain Current                                 | I <sub>DM</sub>                   | ±1.2                  | А                                 |               |    |  |
| Operating Junction and Storage Temperature           |                                   |                       | T <sub>J</sub> , T <sub>STG</sub> | –55 to<br>150 | °C |  |
| Continuous Source Curre                              | ۱ <sub>S</sub>                    | 0.63                  | А                                 |               |    |  |
| Lead Temperature for So (1/8" from case for 10 s)    | Τ <sub>L</sub>                    | 260                   | °C                                |               |    |  |

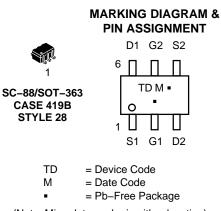
#### THERMAL RESISTANCE RATINGS (Note 1)

| Parameter                               | Symbol         | Тур | Max | Units |
|-----------------------------------------|----------------|-----|-----|-------|
| Junction-to-Ambient - Steady State      | $R_{\thetaJA}$ | 400 | 458 | °C/W  |
| Junction-to-Lead (Drain) - Steady State | $R_{\thetaJL}$ | 194 | 252 |       |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface mounted on FR4 board using 1 oz Cu area = 0.9523 in sq.




## **ON Semiconductor®**

## www.onsemi.com

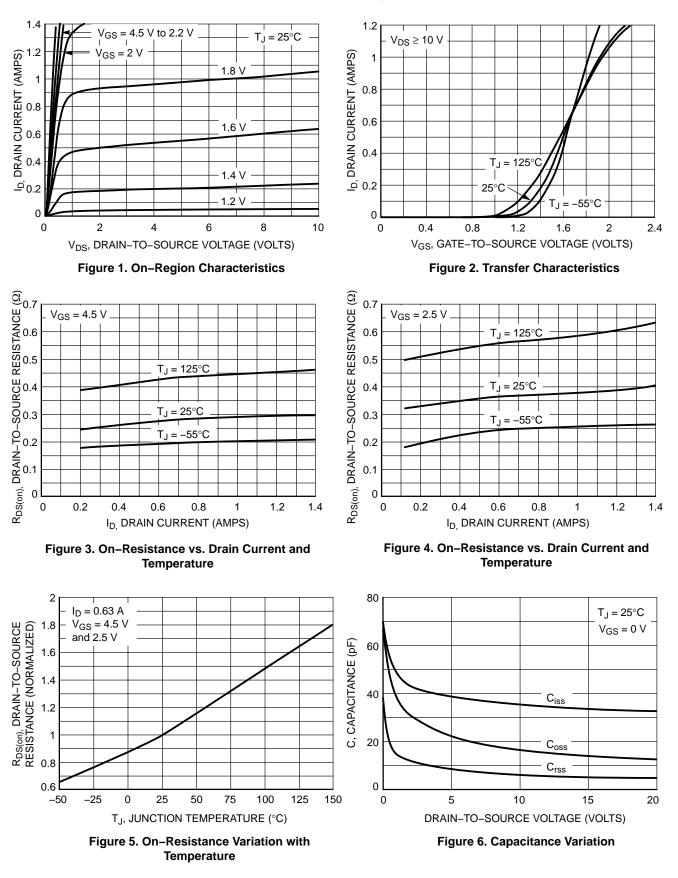
| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> Typ | I <sub>D</sub> Max |  |
|----------------------|-------------------------|--------------------|--|
| 20 V                 | 0.29 Ω @ 4.5 V          | 0.63 A             |  |
|                      | 0.36 Ω @ 2.5 V          | 0.03 A             |  |



Top View

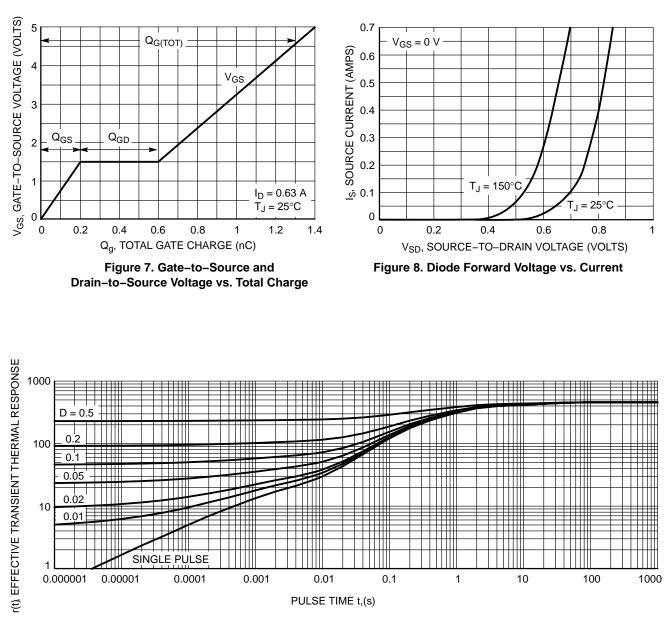


(Note: Microdot may be in either location)


## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

## **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise stated)


| Parameter                                                    | Symbol                               | Test Condition                                                                                        |                        | Min | Тур   | Max   | Unit   |
|--------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|-----|-------|-------|--------|
| OFF CHARACTERISTICS                                          | •                                    | -                                                                                                     |                        |     | -     | -     | •      |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 V, I_D = 250 \mu A$                                                                       |                        | 20  | 27    |       | V      |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> |                                                                                                       |                        |     | 22    |       | mV/ °C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | V <sub>GS</sub> = 0 V, V <sub>I</sub>                                                                 | <sub>DS</sub> = 16 V   |     |       | 1.0   | μΑ     |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | $V_{DS} = 0 V, V_{G}$                                                                                 | <sub>iS</sub> = ±12 V  |     |       | 10    | μA     |
| ON CHARACTERISTICS (Note 2)                                  |                                      |                                                                                                       |                        |     |       | -     |        |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}, I_{D}$                                                                              | = 250 μA               | 0.6 | 0.92  | 1.5   | V      |
| Gate Threshold Temperature<br>Coefficient                    | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                                                       |                        |     | -2.1  |       | mV/ °C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 4.5 V, I <sub>I</sub>                                                               | <sub>D</sub> = 0.63 A  |     | 0.29  | 0.375 | Ω      |
|                                                              |                                      | $V_{GS}$ = 2.5 V, I <sub>D</sub> = 0.40 A                                                             |                        |     | 0.36  | 0.445 |        |
| Forward Transconductance                                     | 9fs                                  | V <sub>DS</sub> = 4.0 V, I <sub>D</sub> = 0.63 A                                                      |                        |     | 2.0   |       | S      |
| CHARGES AND CAPACITANCES                                     |                                      |                                                                                                       |                        |     |       | -     |        |
| Input Capacitance                                            | C <sub>ISS</sub>                     |                                                                                                       |                        |     | 33    | 46    | pF     |
| Output Capacitance                                           | C <sub>OSS</sub>                     | V <sub>GS</sub> = 0 V, f = 1.0 MHz,<br>V <sub>DS</sub> = 20 V                                         |                        |     | 13    | 22    |        |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                                                       | v <sub>DS</sub> = 20 v |     | 2.8   | 5.0   |        |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  |                                                                                                       |                        |     | 1.3   | 3.0   | nC     |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   | V <sub>GS</sub> = 4.5 V, V                                                                            | ns = 10 V,             |     | 0.1   |       |        |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                      | $I_{\rm D} = 0.6$                                                                                     |                        |     | 0.2   |       |        |
| Gate-to-Drain Charge                                         | Q <sub>GD</sub>                      |                                                                                                       | Γ                      |     | 0.4   |       |        |
| SWITCHING CHARACTERISTICS (No                                | ote 3)                               |                                                                                                       |                        |     |       |       |        |
| Turn–On Delay Time                                           | td <sub>(ON)</sub>                   |                                                                                                       |                        |     | 0.083 |       | μs     |
| Rise Time                                                    | tr                                   | V <sub>GS</sub> = 4.5 V, V                                                                            | חם = 10 V,             |     | 0.227 |       |        |
| Turn–Off Delay Time                                          | td <sub>(OFF)</sub>                  | $I_{\rm D} = 0.5 \text{ A}, \text{ R}_{\rm G} = 20 \Omega$                                            |                        |     | 0.786 |       |        |
| Fall Time                                                    | tf                                   |                                                                                                       |                        |     | 0.506 |       |        |
| DRAIN-SOURCE DIODE CHARACTE                                  | RISTICS                              |                                                                                                       |                        |     |       |       |        |
| Forward Diode Voltage                                        | V <sub>SD</sub>                      | $V_{GS} = 0 V,$                                                                                       | $T_J = 25^{\circ}C$    |     | 0.76  | 1.1   | V      |
|                                                              |                                      | I <sub>S</sub> =0.23 A                                                                                | T <sub>J</sub> = 125°C |     | 0.63  |       |        |
| Reverse Recovery Time                                        | t <sub>RR</sub>                      | $V_{GS} = 0 \text{ V}, \text{ dI}_S/\text{dt} = 100 \text{ A}/\mu\text{s},$<br>$I_S = 0.63 \text{ A}$ |                        |     | 0.410 |       | μs     |

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

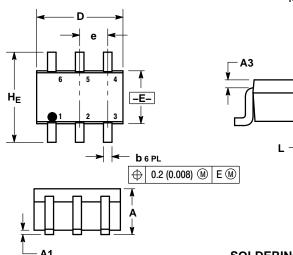


#### TYPICAL PERFORMANCE CURVES (T<sub>J</sub> = 25°C unless otherwise noted)

## **TYPICAL PERFORMANCE CURVES** ( $T_J = 25^{\circ}C$ unless otherwise noted)






#### ORDERING INFORMATION

| Device       | Package            | Shipping <sup>†</sup> |
|--------------|--------------------|-----------------------|
| NTJD4401NT1G | SC-88<br>(Pb-Free) | 3000 / Tape & Reel    |
| NVJD4401NT1G | SC–88<br>(Pb–Free) | 3000 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE W

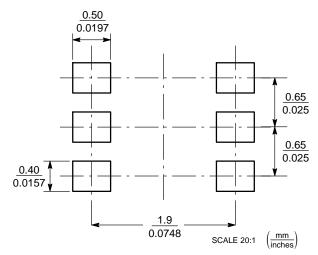


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.

Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.


|                 | MILLIMETERS |      |      | INCHES    |       |       |
|-----------------|-------------|------|------|-----------|-------|-------|
| DIM             | MIN         | NOM  | MAX  | MIN       | NOM   | MAX   |
| Α               | 0.80        | 0.95 | 1.10 | 0.031     | 0.037 | 0.043 |
| A1              | 0.00        | 0.05 | 0.10 | 0.000     | 0.002 | 0.004 |
| A3              | 0.20 REF    |      |      | 0.008 REF |       |       |
| b               | 0.10        | 0.21 | 0.30 | 0.004     | 0.008 | 0.012 |
| С               | 0.10        | 0.14 | 0.25 | 0.004     | 0.005 | 0.010 |
| D               | 1.80        | 2.00 | 2.20 | 0.070     | 0.078 | 0.086 |
| Е               | 1.15        | 1.25 | 1.35 | 0.045     | 0.049 | 0.053 |
| е               | 0.65 BSC    |      |      | 0.026 BSC |       |       |
| L               | 0.10        | 0.20 | 0.30 | 0.004     | 0.008 | 0.012 |
| HE              | 2.00        | 2.10 | 2.20 | 0.078     | 0.082 | 0.086 |
| STYLE 26:       |             |      |      |           |       |       |
| PIN 1. SOURCE 1 |             |      |      |           |       |       |
|                 | 2. GATE 1   |      |      |           |       |       |
|                 | 3 DRAIN 2   |      |      |           |       |       |

4. SOURCE 2

5. GATE 2 6. DRAIN 1

0. DIVAIN I

**SOLDERING FOOTPRINT\*** 



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient to patient of the patient patient of the pa

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative